Yuan Xiao (The Ohio State University), Yinqian Zhang (The Ohio State University), Radu Teodorescu (The Ohio State University)

SPEculative Execution side Channel Hardware (SPEECH) Vulnerabilities have enabled the notorious Meltdown, Spectre, and L1 terminal fault (L1TF) attacks. While a number of studies have reported different variants of SPEECH vulnerabilities, they are still not well understood. This is primarily due to the lack of information about microprocessor implementation details that impact the timing and order of various micro-architectural events. Moreover, to date, there is no systematic approach to quantitatively measure SPEECH vulnerabilities on commodity processors.

This paper introduces SPEECHMINER, a software framework for exploring and measuring SPEECH vulnerabilities in an automated manner. SPEECHMINER empirically establishes the link between a novel two-phase fault handling model and the exploitability and speculation windows of SPEECH vulnerabilities. It enables testing of a comprehensive list of exception-triggering instructions under the same software framework, which leverages covert-channel techniques and differential tests to gain visibility into the micro-architectural state changes. We evaluated SPEECHMINER on 9 different processor types, examined 21 potential vulnerability variants, confirmed various known attacks, and identified several new variants.

View More Papers

Automated Cross-Platform Reverse Engineering of CAN Bus Commands From...

Haohuang Wen (The Ohio State University), Qingchuan Zhao (The Ohio State University), Qi Alfred Chen (University of California, Irvine), Zhiqiang Lin (The Ohio State University)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More