
SPEECHMINER: A Framework for Investigating and
Measuring Speculative Execution Vulnerabilities

Yuan Xiao
The Ohio State University

xiao.465@osu.edu

Yinqian Zhang
The Ohio State University
yinqian@cse.ohio-state.edu

Radu Teodorescu
The Ohio State University

teodores@cse.ohio-state.edu

Abstract—SPEculative Execution side Channel Hardware
(SPEECH) Vulnerabilities have enabled the notorious Meltdown,
Spectre, and L1 terminal fault (L1TF) attacks. While a number
of studies have reported different variants of SPEECH vulnerabili-
ties, they are still not well understood. This is primarily due to the
lack of information about microprocessor implementation details
that impact the timing and order of various micro-architectural
events. Moreover, to date, there is no systematic approach to
quantitatively measure SPEECH vulnerabilities on commodity
processors.

This paper introduces SPEECHMINER, a software frame-
work for exploring and measuring SPEECH vulnerabilities in an
automated manner. SPEECHMINER empirically establishes the
link between a novel two-phase fault handling model and the
exploitability and speculation windows of SPEECH vulnerabilities.
It enables testing of a comprehensive list of exception-triggering
instructions under the same software framework, which leverages
covert-channel techniques and differential tests to gain visibility
into the micro-architectural state changes. We evaluated SPEECH-
MINER on 9 different processor types, examined 21 potential
vulnerability variants, confirmed various known attacks, and
identified several new variants.

I. INTRODUCTION

Speculative Execution Side Channel Hardware Vulnera-
bilities [27] are computer micro-architectural vulnerabilities
in modern pipelined processors that, due to speculative and
out-of-order execution, may execute instruction sequences that
should not be executed if instructions are strictly executed in
program order. Speculatively executed instructions may lead to
information leakage as they lead to state changes in cache in
the same way as retired instructions. Such vulnerabilities are
the root causes of the well-known Meltdown [23], Spectre [17],
Foreshadow [34], and RIDL [35].

Although these security attacks are high-profile due to
their severe consequences, they are unlikely to be completely
eliminated in modern high-performance processors, because
transient execution (including speculative and out-of-order
execution), implicit caching, and aggressive prefetching offer
significant performance gains. While some of these vulnera-
bilities can be mitigated by microcode patches or hardware
fixes [13], [2], [4], others have to be temporarily mitigated by

software [27], [21], [3], [25]. Moreover, new variants of these
vulnerabilities are constantly being discovered by hackers and
security researchers. Prominent examples include LazyFP [32],
Meltdown-RW [16], Fallout [29], ZombieLoad [30], etc.

A major challenge faced by researchers, software devel-
opers and hardware designers is the ignorance about the
fundamental question of what determines the success or failure
of an attack. Without a concrete general conclusion over the
nature of these attacks, great efforts are put into figuring
out unique mitigation for each newly-emerging variant. Eval-
uating variants is also difficult with only random attempts
of seemingly relative implementation tricks, hoping for a
successful exploitation. Three aspects of complexity lead to
the difficulty for a general conclusion to be made. First, the
attacks vary greatly from each other. They have different threat
models and exploit different instructions. And not enough
details are provided about their implementation. Second, the
micro-architectural states during execution is unobservable and
unpredictable. The aggressive speculative and out-of-order pro-
cessor workflow leads to great complication for the execution
of even one instruction. Third, the design and implementation
of computer micro-architectures are highly variable depending
on processor generation and manufacturer. The same variant of
a vulnerability may manifest on one processor family but not
others. Therefore, given a commodity processor, there is no
method that could affirmatively assert that a specific processor
is free of all known vulnerabilities: The only result that can be
demonstrated by security researchers is a successful attack on
a particular CPU under a certain condition, but unsuccessful
attempts do not offer a sense of security.

The goal of the paper is to (1) comprehensively understand
the SPEculative Execution side Channel Hardware (SPEECH)1

Vulnerabilities [27] in modern computer micro-architectures
and (2) systematically and quantitatively evaluate SPEECH
vulnerabilities on commodity processors, including provid-
ing deterministic evidence for inexploitable variants. As the
Spectre-type vulnerabilities [5] are due to illegal poisoning of
branch prediction rather than hardware implementation flaws in
the prediction units themselves, we put emphasis on the more
complex Meltdown-type SPEECH vulnerabilities caused by
fault handling. All Meltdown-type vulnerabilities [5] require
such faults that may or may not trigger an explicit exception.
In this paper, we intend to get a comprehensive understanding
of the general Meltdown-type vulnerabilities. Thus, we focus

1Speculative Execution Side Channel Hardware Vulnerability is the term
preferred by Intel and Microsoft. We omit “S” in the acronym to reflect the
debate of whether a side channel or a covert channel is used in such attacks.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23105
www.ndss-symposium.org

on the core x86 ISA but leave hardware extensions such as
SGX and VMX to future work.

However, it is very challenging to precisely determine the
internal micro-architectural implementation of the processors,
which is not made public in sufficient detail by the processor
vendors. Moreover, while some of the micro-architectural
design choices may be available, implementation details such
as timing and order of events are not documented. To achieve
the first research goal, we propose a novel two-phase model
to describe the execution of x86 instructions with respect to
the handling of faults. The model abstracts away complex
implementation details and focuses on the software-observable
and measurable events that are relevant to SPEECH vulnera-
bilities. More specifically, the two-phase model describes the
exploitation of a SPEECH vulnerability as the outcome of two
race conditions: A race condition between data fetching and
processor fault handling and a race condition between covert
channel transmission and speculative instruction squashing.
The exploitability and speculation window can be determined
by these two race conditions.

To achieve the second research goal, we designed a soft-
ware framework, dubbed SPEECHMINER, to systematically
and quantitatively measure the exploitability and the specula-
tion windows of a variety of SPEECH vulnerabilities. However,
building such an analytical framework is technically challeng-
ing. SPEECHMINER brings forward the following solutions to
this non-trivial task:

To gain visibility into the micro-architecture, SPEECH-
MINER employs covert-channel techniques to indirectly infer
micro-architectural state changes. To establish the link between
the two-phase model and the SPEECH vulnerabilities, SPEECH-
MINER incorporated several carefully designed experiments
to infer the internal implementations of the tested computer
micro-architecture. To enable quantitative analysis, SPEECH-
MINER dynamically adjusts the tested instruction sequences
and utilizes differential tests to quantify the exploitability and
speculation windows. Finally, to enable systematic analysis,
instead of exhausting all micro-architectural uses of specu-
lative execution, we enumerate all architecturally-observable
exceptions by referencing the software development manuals
from the vendors (though in a manual way) to instantiate the
test cases of SPEECHMINER.

We run SPEECHMINER on 9 different types of processors
to examine 21 different variants of SPEECH vulnerabilities.
our experiments not only confirmed previously demonstrated
attacks, but also identified a few new exploitable variants
on the tested Intel and AMD machines, which have been
reported to the vendors. Moreover, SPEECHMINER enabled us
to perform quantitative measurements of the exploitability and
speculation windows of these vulnerabilities. The significance
of the quantitative analysis is that it provides security assurance
for the negative results—a processor not vulnerable in one
of our exploitability tests is assured to be immune from the
corresponding attack.

Moreover, our study yields some very interesting discov-
eries. For instance, it explains why zero values are sometimes
returned by the Meltdown-US attacks; it suggests that the
speculation window of any faulting instructions can be con-
trolled and tuned by the attacker; it rules out the possibility of

advanced attacks by nesting multiple speculative instructions;
it explains why Meltdown-US attacks can leak data not present
in the L1 cache, but L1TF attacks cannot.

In summary, this work makes the following contributions:

• It proposes a novel two-phase model to describe x86
fault handling and its relationship to the exploitability and
speculation windows of SPEECH vulnerabilities.

• It designs and implements SPEECHMINER framework
to automatically and systematically explore and measure
SPEECH vulnerabilities.

• It enables quantitative measurements of the exploitability
of SPEECH vulnerabilities, providing security assurance to
negative test results.

• It explains the root causes of some observations made by
prior studies and clarifies common misunderstandings.

• It performs automated tests of 21 vulnerability variants on
9 processor types; it confirms existing vulnerabilities and
uncovers a few new variants of SPEECH vulnerabilities.

II. MODELING SPEECH VULNERABILITIES

A. Documented Instruction Execution Model

Although the exact internal implementation of a commod-
ity processor is proprietary to each processor vendor, some
design details are made available in Intel and AMD software
developer manuals, white papers, patent applications, as well
as technical blogs written by computer architects and hardware
engineers. The execution model we build in this paper abstracts
away aspects that are not relevant to SPEECH vulnerabilities.
We show an overview of typical out-of-order execution engine
in Fig. 1. As the figure shows, instruction execution follows
five main stages: instruction fetch, decode, issue, execute
(including memory access) and retire.

1) Fetching, Decoding, Execution and Retirement: We first
model the five stages for an instruction in the execution engine.

Instruction fetching. The front end of the processor fetches
instructions from the L1 instruction cache. Since instruction
addresses are virtual, they must first be translated into physical
addresses before a fetch request can be sent to memory. Virtual
to physical address translations are cached in the instruction
TLB (ITLB). If a translation is not present in the ITLB, a
look-up request will be sent to the second-level TLB (STLB),
paging structure caches, or the page tables in the memory.

An access permission check is performed simultaneously
with the address translation. If the check fails (e.g. due to
an illegal address), the front end will immediately raise an
exception and start fetching instructions from the exception
handler. The TLB entry may also be marked as invalid. The
instruction at the illegal address will not be decoded or issued
for execution [14, Chapter 2.3.2]. These instructions therefore
cannot serve as the basis for a speculative execution attack. If
the permission check succeeds, instructions are fetched from
the L1 Instruction cache, lower-level caches, or the memory.
They are then passed on to the decode stage.

Instruction decoding. The instruction decoder is responsible
for interpreting the instruction, identifying operands and, in
the case of x86, translating the complex (CISC) instructions

2

Fig. 1: Instruction execution model of x86 (illustrated using Skylake processors).

into a simpler internal representation called micro-operations
(a.k.a., µops). µops are not visible to the programmer and
follow the reduced instruction set (RISC) design. This means
they use two input operands and one output, all arithmetic and
logic operations are performed on register operands and the
only instructions that access memory are Loads and Stores.
Decoded instructions are added to the Instruction Decode
Queue (IDQ) in program order. This marks the end of the front-
end of the processor and the last step in which instructions are
processed in program order.

Instruction issuing. From the IDQ, µops are issued in FIFO
order to the back end of the pipeline. Once issued, they are no
longer constrained by program order and can execute out-of-
order, as soon as their operands are available. While µops can
execute out-of-order, they are required to commit their results
to the visible processor state (architectural state) in program
order, to preserve correctness. A hardware structure called a
reorder buffer (ROB) is used to keep track of the µops program
order, while they are in the back-end of the pipeline. The ROB
is a table that records all µops in execution and their associated
status (e.g. operands pending, in-execution, completed, etc.)
When issued, µops are added to the ROB, in FIFO order, as
long as there are available slots.

Instruction execution and retirement. All µops operands
are renamed and their dependencies tracked with the help of
hardware structures called reservation stations. Once issued,
µops are eligible for execution provided that their operands
are ready and execution resources are available. µops are
executed out-of-order and in parallel. However, if a µop has
data dependency on its preceding µops, it has to wait until the
dependency is resolved before being scheduled for execution.
When all conditions are met µops are dispatched to the appro-
priate execution units through hardware structures called ports.
Multi-cycle operations can occupy execution units, possibly
stalling other µops demanding the same resources.

When µops finish execution they write back their results to
so-called physical registers that are not part of the architectural

state and are not visible to the program. Results are also
forwarded to dependent µops through dedicated bypass data
paths allowing dependent µops to be scheduled for execution
in the same cycle.

While µops can execute out-of-order, they are required
to commit their results to architectural state visible to the
program (including architectural registers and memory) in
program order. The ROB is used to enforce this requirement
by committing and retiring µops in FIFO order. As µops of an
instruction reach the head of the ROB, if they have all finished
execution, they can commit their results and retire, at which
point they are removed from the ROB.

Transient execution relies on hardware to prevent transient
instructions from changing the architectural state visible to the
program, until instructions are determined to be correct. When
mis-speculation is detected (e.g. a branch is mis-predicted or
an exception is triggered), all mis-speculated instructions have
to be squashed. Precise handling of transient state requires that
all instructions that precede the first mis-speculated instruction
must commit, and all other mis-speculated instructions must
be squashed.

2) Memory Accesses and Address Translation: The µops
that perform memory accesses are executed in specific execu-
tion units. In 32-bit mode, the logical address is first translated
into linear address by referencing the segment descriptor; in
64-bit mode, the logical address is the same as the linear
address. Then given the linear address of the data in memory,
TLB is first consulted to look for the physical address. If the
corresponding entry is not available in the data TLB (DTLB),
the secondary TLB (STLB) is searched. Similarly, the paging
structure cache and page tables in memory are looked up if
an STLB miss is encountered. When walking the page tables,
the corresponding page directory entries are loaded into the
paging structure cache. When the page table entry (PTE) for
the 4KB page is eventually located, it will be inserted into
STLB and DTLB. Given a physical address from the DTLB,
the data fetching starts from the L1 cache which is the fastest
in the memory subsystem. Should there be a L1 miss, the L2

3

cache, the last-level cache (LLC), and the DRAM are checked
one by one until there is a hit. Upon a hit, the data will
be pushed to all levels of cache and L1 will pass it to the
execution units. Processor internal buffers such as Data Cache
Unit (DCU), Line Fill Buffer (LFB), Load Buffer (LB) and
Store Buffer (SB), as components of L1 cache, are not paid
enough attention to by the security community until recent
disclosure of transient execution attacks leveraging them [35],
[29], [30].

B. Detecting and Handling Mis-Speculation

Although high-level information on instruction execution
is documented in the manuals of vendors, the internal fault
handling during speculative execution (including out-of-order
execution) remains unclear and is complex due to aggressive
out-of-order implementation. We propose a two-phase model
to understand the internal micro-architectural implementation
of fault handling. Our model abstracts the unnecessary, maybe
unclear, hardware implementation details into logical events
that are directly related to SPEECH. The two phases to be
explained not only clarify the exact fault handling scheme
but also correspond to the two race conditions faced by an
attack. This offers us an opportunity to study them separately
and understand them systematically. The model will be later
validated through experiments described in Sec. IV.

(a) Two phases of fault handling.

(b) Exploitable fault handling.

(c) Non-exploitable fault handling.

Fig. 2: The two-phase model for fault handling.

The security check starts at the same time as data fetching,
but proceeds asynchronously. If the check passes, the fetched
data can be finally committed. Otherwise, the processor will
handle the fault (e.g., by raising an exception) and clean up
the pipeline by discarding the execution results and squashing
µops not supposed to execute. As shown in Fig. 2a, the ex-
ceptions are handled in two phases: In the first phase (dubbed
P1), defined as when the processor detects an error in the
µop, the exception is passed to the corresponding execution
unit immediately, which reacts to it by stopping the execution
of the µop. If the µop performs a data fetching, two cases may
happen: If the data is not yet retrieved, the fetching will be
suspended and a dummy value (e.g., zero) is returned as the
data, as in Fig. 2c. If the data loading has already finished
at that time, it will not be affected. The data fetching is
immediately forwarded to µops in the ROB that are waiting
for it. This is demonstrated in Fig. 2b. It in fact describes one
of the two race conditions for a SPEECH attack to succeed,
between speculative data fetching and processor fault handling.

The second phase of exception handling (dubbed P2)
happens when the faulting µop reaches the head of ROB and is

Fig. 3: Architecture and workflow of SPEECHMINER.

ready to retire. The processor checks any pending exceptions
with the µops of the retiring instruction and, if detected, the
entire execution engine is cleansed in the following way. First,
all following µops in the ROB are squashed: already executed
µops will never retire and their execution results are discarded;
µops that are not yet executed will not be executed any more.
Second, the IDQ will stop issuing more decoded µops to
ROB. IDQ will be flushed for optimal future performance.
Third, information about the exception is saved in relevant
registers. Lastly, the front end will be redirected to exception
handler. After all preparation is done by the processor, the
exception handler of the OS will take over the control of the
CPU. This leads to the other race condition for the attack. The
covert channel transmission instructions executed speculatively
should conclude before P2. Otherwise, they are going to be
squashed and never get a chance to transfer the secret to the
attacker.

III. SPEECHMINER FRAMEWORK

To explore SPEECH vulnerabilities of a processor in an
automated (or semi-automated) manner, we designed and im-
plemented a software framework, dubbed SPEECHMINER, in
which a sequence of x86 instructions is constructed using
templates and executed in a controlled environment. The
SPEECHMINER framework provides the users with interfaces
to select the instruction sequences for testing and to analyze
the results of the tests. The user can use scripting languages
to automate large-scale tests using these interfaces.

As the same instruction sequence may exhibit non-
deterministic behaviors at the micro-architectural level when
executed with different micro-architectural conditions (e.g.,
cache and TLB conditions, memory bus status, etc.), the
SPEECHMINER framework is designed to provide control and
abstraction of these external conditions. Moreover, the frame-
work is designed to work in both kernel mode and user mode,
allowing tests of instruction sequences that operate in both
modes; it also supports both 32-bit and 64-bit architectures.

A. Architecture of SPEECHMINER

Fig. 3 illustrates the architecture and workflows of the
SPEECHMINER framework. Rectangles represent software
components and ellipses represent code/data. SPEECHMINER
consists of the following components. The Instruction Se-
quence Selector of SPEECHMINER selects the instruction

4

sequence for testing a certain variant of SPEECH vulnerability.
Then a dummy secret data is initialized in the memory and
the required page table flags, segment descriptor or other
settings are configured. Next, SPEECHMINER starts to run
experiments. In each round of the test, the Data Accessibility
Controller module first sets the desired execution environments
such as the status of caches and TLBs. Then the experiment is
conducted and raw output data is collected via covert channels.
The Covert Channel Data Processing module analyzes the raw
data, generating either the final analysis results or instructing
the Dynamic Instruction Insertion module to modify the tested
instruction sequence for the next round of experiments.

Instruction Sequence Selector. In each test, one instruction
sequence is selected by the Instruction Sequence Selector.

Secret Data Initialization. In many of the tests, the secret
value to be extracted is stored in the memory. The SPEECH-
MINER framework simulates the targeted secret using a 64-
bit integer variable (in 64-bit mode) and initializes it to be
a specified value (e.g., 0x42000 as used in following code
examples). A single MOVQ instruction could load this secret
value from the memory into a register. The size of the secret
is reduced to 32 bits in the 32-bit mode tests.

Page Table Flag Controller. For cases that require modifi-
cation of page table entries (PTE), we implemented a kernel
module that allows setting or clearing specific PTE flags.

Segment Descriptor Controller. Segmentation is still imple-
mented in all modern x86 processors. When running the tool in
the 32-bit mode, segmentation is enabled. Segment Descriptor
Controller is provided to generate required segment descriptors
in the Local Descriptor Table to trigger exceptions by violating
segmentation-related rules.

Other Preparation. Besides these common preparation com-
ponents, in some cases, SPEECHMINER also needs to take care
of some special needs such as configuring memory protection
keys [20], enabling SMAP [19], etc.

Data Accessibility Controller. To ensure a deterministic
execution environment, the SPEECHMINER framework needs
to control the status of the cache copies of specific memory
blocks and the TLB entries of a specific memory page. The
Data Accessibility Controller utilizes preloading and flushing
techniques to control TLB and cache entries. Some technical
challenges may arise, however.

The preloading of TLB entries may trigger exceptions
(which is expected in our design). To preload the TLB entry
of a kernel page, the Data Accessibility Controller preloads
its TLB entry in a kernel module. To preload TLB entries
with Reserved flag set or Present flag cleared, directly
loading the corresponding page can preload entries in the
paging structure caches [11, Chapter 4.10]. While valid TLB
entries may not be created, invalid entries may be created.
Flushing TLB entries are performed in the supervisor model
via a kernel module. One method is to leverage the INVLPG
instruction which flushes one single TLB entry and the related
paging structure cache entries. The other is to reload the CR3
register which will flush all TLB entries and the whole paging
structure cache.

Preloading and flushing the cache entries of a data block
are performed on its shadow virtual addresses. For each data
block that needs fine-grained control of its cache status (i.e., on
which cache level a copy is presented), two different virtual
address mappings are provided for the same memory page
that stores the data block: One mapping is used by the test
that triggers exceptions, while the other is used as the shadow
virtual address that does not block accesses. To force data in
L1, it is directly preloaded via the shadow address. To make
the data block in L2 (but not in L1), it needs to be preloaded
first and then evicted from L1 using an eviction set [24].
As the LLC cache is shared among all physical cores, after
flushing the data to memory (using the CLFLUSH instruction),
preloading it from another physical core ensures that the data
resides in LLC but not in the L1 or L2 caches (of the tested
core). Moreover, as preloading or flushing cache entries also
preloads the TLB entry of the page, additional procedures must
be taken if this side effect is undesired.

Covert Channel Data Processing. The covert channel signals
collected during the test are processed and analyzed. If needed,
it provides feedback to the Dynamic Instruction Insertion mod-
ule to repeat the test with adjusted the instruction sequences
to be tested.

Dynamic Instruction Insertion. The module is implemented
by altering the code at runtime. It dynamically adjusts a given
code sequence according to the need of the experiments (e.g.
by inserting a certain number of ADD/SUB instructions).

Handling or Suppressing Exceptions. As the tested instruc-
tion sequences may trigger exceptions, the framework must
handle or suppress exceptions properly. When executed in user
mode, exceptions are dealt within signal handlers to ensure
compatibility on all hardware; when executed in supervisor
mode, the exceptions are suppressed using Retpoline [33], as
is done by Stecklina et al. [32].

B. Instruction Sequences

To trigger different types of faults, the tested instruc-
tion sequences may have distinct structures. Nevertheless, we
managed to build a uniform modular template for all tested
instruction sequences. Specifically, a template consists of three
components: a Windowing Gadget, a Speculation Primitive,
and a Disclosure Gadget2.

Speculation Primitives. A Speculation Primitive consists of
one or two instructions that will trigger a fault when executed.

Windowing Gadgets. A Windowing Gadget consists of a se-
quence of instructions that precedes the Speculation Primitive.
It serves two purposes: to enlarge the speculation window
and to eliminate side-effects of instruction issuing. These
two purposes can be satisfied by delaying the retirement of
the Speculation Primitive, which can be achieved by three
means: (1) Delaying the retirement of the instructions of the
Windowing Gadget. This is because an instruction can retire
only when it finishes its execution and all prior instructions
have already retired. (2) Making the Speculation Primitive
dependent on the execution result of the Windowing Gadget.

2The terminologies follow the suggestions from Intel and Microsoft [27].

5

Thus, the instructions of the Speculation Primitives cannot
be executed out-of-order before the dependency is resolved.
(3) Occupying the execution units or registers that are also
required by the Speculation Primitive. Therefore, typical tech-
niques used by the Windowing Gadgets include accessing
non-cached memory blocks, loading memory with a chain of
dependency, performing integer ALU operations with a chain
of dependency [27].

Disclosure Gadget. A Disclosure Gadget is a sequence of
instructions that are speculatively executed, utilizing covert-
channel techniques (in collaboration with the Disclosure Prim-
itive to be explained shortly) to measure the speculation
windows or the latency of data fetching, etc.
1 movq (%rbx , %rcx , 1) , %rbx

Listing 1: Example of a Type-I Disclosure Gadget.

• Type-I Disclosure Gadgets only have a single memory load
instruction (see Listing 1, all assembly code in this paper
follows AT&T syntax.), which we call the covert-channel
sender. A FLUSH-RELOAD covert channel memory buffer
is allocated, which consists of 256 logically consecutive
4KB pages. Each page is considered as one slot of the
buffer. FLUSH-RELOAD is performed at the first integer-
sized block of each page. Two forms of MOV instructions
may be seen in the listings of this paper; whether or not an
offset is used by MOV is determined by the values of the
related registers.

• Type-II Disclosure Gadgets insert a sequence of ADD/-
SUB instructions before the covert-channel sender (see
Listing 2). All these instructions have data dependencies on
each other, so that they are executed in program order. The
execution latency of an ADD or SUB instruction is exactly
one cycle, so the total execution cycles can be estimated. An
ADD and a SUB instruction are inserted in an alternating
pattern so that the resulting value of their operand—the
memory address used for the covert channel—does not
change significantly, which simplifies the design of the
covert-channel receiver. By changing the number of ADD/-
SUB instructions in the Windowing Gadget, the framework
controls the latency of the execution of the covert-channel
sender. Still, the last MOV can optionally include an offset,
as shown in Listing 1.

1 [add $1 , %rbx]
2 [sub $1 , %rbx]
3 . . .
4 movq (% rbx) , %rbx

Listing 2: Example of a Type-II Disclosure Gadget.

Besides the three components of the instruction sequence
template, the SPEECHMINER framework also incorporates a
Disclosure Primitive to receive signals sent by the Dis-
closure Gadget. It leverages the FLUSH-RELOAD techniques
to determine whether or not certain memory blocks have
been accessed by the covert-channel sender of the Disclosure
Gadget. As covert-channel communication is subject to noise,
the test must be repeated multiple times for the Disclosure
Primitive to assert whether or not the covert-channel sender
was speculatively executed. SPEECHMINER only requires a
binary output from the Disclosure Primitive: whether or not

the signal has been received. The results will then be collected
and analyzed by the Covert Channel Data Processing module.

C. Speculation Primitives

In this paper, we focus on Speculation Primitives that in-
volve faults. While branch misprediction can also be explained
and analyzed in the same two-phase model (see Sec. IV-F),
they are vulnerable by design.

To comprehensively measure all possible faults and study
their exploitability, we base our tests on the exception list
excerpted from the Intel Software Developer Manual [11].
However, not all exceptions are directly related, as they do not
serve the first role—they are not guarding secrets. We therefore
define two templates of Speculation Primitives:
1 / / %RBX: a d d r e s s o f a read−on ly page
2 mov $0x42000 , (% rbx)
3 mov (% rbx) , %rbx

Listing 3: An example of a two-instruction template.

The first template contains one single Load instruction
that triggers exceptions. The second template involves two
instructions, with the first causing exceptions by writing to
memory or performing checks (e.g., BOUND) and the second
speculatively loading data that is influenced by the first (see
Listing 3). Note that the constant value 0x42000 used in
the example is only for illustration purposes, which can be
replaced by other values. This is also true in all the following
code snippets. If an exception is not applicable to either
of these two templates, it is excluded from the analysis.
We comprehensively categorize all such exceptions by their
protection mechanism, with a comprehensive list given in
Appendix A.

IV. UNDERSTANDING SPEECH VULNERABILITIES

SPEECH vulnerabilities are caused by speculative execu-
tion. However, being able to speculatively execute instructions
itself does not qualify a vulnerability. The root cause of
SPEECH vulnerabilities is that some inaccessible secret data
could be accessed by speculatively executed instructions before
the processor captures the fault. Moreover, once the secret
data is fetched by the speculative instructions, what can be
done with it (e.g., leaking the secret using covert channels) is
determined by the speculation window—the time period (in
CPU cycles) of instructions executed speculatively before the
faulting instruction is squashed. Our two-phase fault handling
model very well separates the two race conditions:

• Race Condition I: data fetching vs. processor fault handling.
• Race Condition II: covert channel transmission vs. specu-

lative instruction squashing.

Race Condition I determines exploitability and Race Con-
dition II determines the speculation window. The two-phase
model enables a comprehensive understanding of key factors
that determine these two aspects.

In this section, we first verify the two-phase model by
examining the effects of P1 and P2 using the SPEECHMINER
framework. We then leverage SPEECHMINER to perform a
systematic analysis on the two race conditions. We will
show that the analysis enabled by SPEECHMINER helps us

6

explain known attack phenomena and clarify common misun-
derstandings. Several tests were designed for these goals. The
SPEECHMINER framework allows running each of these tests
to examine different types of Speculation Primitives. For the
clarification and simplicity of discussion, we illustrate these
tests using a Speculation Primitive used in the Meltdown-US
attack [23]. But notice that the actual instruction sequences
may differ for distinct Speculation Primitives.

A. Confirming Speculative Instruction Squash

It is known that speculatively executed instructions will be
squashed when the processor handles the faults. We empiri-
cally verify that issued but not yet executed µops will not be
executed after the squashing. This fact will be the basis of the
following experiments. The experiments were conducted on
an Intel i7-7700HQ (KabyLake) machine with Ubuntu 16.04
(Linux 4.4.0-137) as the operating system. Each experiment is
repeated for 5 times for reliability.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RDX: a d d r e s s o f a n o t h e r uncached memory b u f f e r
3 / / ∗(%RDX) = %RBX
4 / / %RCX: i l l e g a l a d d r e s s whose d a t a i s 0 x42000
5 / / −−−
6 / / Windowing Gadget
7 sub %rbx , %r c x
8 movq (% rdx) , %rbx
9 / / −−−

10 / / S p e c u l a t i o n P r i m i t i v e
11 movq (%rcx , %rbx , 1) , %r c x
12 / / −−−
13 / / D i s c l o s u r e Gadget
14 [add $1 , %rbx]
15 [sub $1 , %rbx]
16 . . .
17 movq (% rbx) , %rbx

Listing 4: The effects of speculative instruction squash.

Instruction sequences. As shown in Listing 4, the instructions
of the Disclosure Gadget are independent of the data read by
the Speculation Primitive. However, because all instructions
in the Speculation Primitive and the Disclosure Gadget are
dependent on the data fetched in the Windowing Gadget, the
Speculation Primitive and the Disclosure Gadget start at the
same time. The slow memory fetching also allows enough time
for following µops to be issued.

Experiments and expected observations. In this test, the
framework tunes the number of ADD/SUB instructions in-
serted in the Disclosure Gadget. If all issued instructions are
eventually executed, we would expect to receive the covert-
channel signal regardless of the number of inserted ADD/SUB
instructions. Otherwise, the signal should disappear when
the number of ADD/SUB instructions increases to a certain
threshold.

Results. In the experiments, we observed that when the
inserted instructions exceed a threshold, the covert-channel
receiver no longer receives any signal from the covert channel.
As the number is much smaller than the size of ROB [37], it
is not caused by failed issuing due to ROB limits.

Conclusion: Issued but not yet executed µops will be
squashed when the exception is handled.

B. Understanding Effects of P1

Three sets of experiments were performed to understand
the effects of P1 on the current execution unit, other execu-
tion units, and the entire execution engine, respectively. The
experiments were performed in the same settings as Sec. IV-A.

1) P1 on Current Execution Unit: This test is designed to
determine how P1 affects the execution unit being used by the
Speculation Primitive.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RDX: a d d r e s s o f a n o t h e r uncached memory b u f f e r
3 / / ∗(%RDX) = %RBX
4 / / %RCX: i l l e g a l a d d r e s s whose d a t a i s 0 x42000
5 / / −−−
6 / / Windowing Gadget
7 movq (% rdx) , %rdx
8 / / −−−
9 / / S p e c u l a t i o n P r i m i t i v e

10 movq (% r c x) , %r c x
11 / / −−−
12 / / D i s c l o s u r e Gadget
13 movq (%rbx , %rcx , 1) , %rbx

Listing 5: The effects of P1 on the current execution unit.

Instruction sequences. As shown in Listing 5, the instruction
sequence consists of a Windowing gadget, a Speculation Prim-
itive, and a Disclosure Primitive. The Speculation Primitive is a
simple slow memory load to ensure that the retirement latency
of the Speculation Primitive remains constant by postponing it
to a late enough fixed time. Thus, influence of P2 is excluded
from this experiment.

Experiments and expected observations. The tests were
repeated four times, with the secret data placed in L1D cache,
L2 cache, LLC, and memory, respectively. The TLB entry of
the secret’s address is always flushed to ensure a fixed P1
latency. In these experiments, we would hope to see whether
the changes of the data fetching latency affects the covert-
channel signal received by the Disclosure Primitive. If so,
whether P1 happens before the data is fetched affects the return
values of current execution unit.

Results. We observed that only when the secret data is stored
in the L1 cache could the correct covert-channel signal be
received. When the secret data is store in L2, LLC, or the
memory, a zero signal is received. This observation validates
our theory in II-B. The execution unit terminates after catching
the exception; a dummy value of zero is returned as the result
of the execution. We will show that P2 is not relevant in this
experiment in Sec. IV-C.

Conclusion: P1 terminates the current execution unit. If
the latency of P1 is greater than the data fetching latency,
the correct value can be propagated to the speculative
instructions; otherwise, a zero value will be returned.

2) P1 on Other Execution Units: As P1 terminates the
current execution unit, it is directly related to the exploitability.
However, it is not yet clear the exploitability is also affected
by P1 of other faulting instructions. If so, attacks may be
enhanced by combining two or more Speculation Primitives.

Instruction sequences. Different from other tests, two Specu-
lation Primitives are included in this test to determine whether

7

Fig. 4: Illustration of P1 effects on other execution units.

P1 of the first Speculation Primitive also influences the ex-
ecution unit used by the second Speculation Primitive. We
consider two cases, depending on whether the two Speculation
Primitives access the same memory address.

First, the two Speculation Primitives access the same
memory address. The instruction sequence is designed as
shown in Listing 6. A sequence of inter-dependent ADD/-
SUB instructions are inserted between the two Speculation
Primitives to control the delay of the execution of the second
Speculation Primitive. Since the first inserted ADD instruction
and the first Speculation Primitive both have data dependency
on the Windowing Gadget, they start at the same time. But
the second Speculation Primitive has to wait until all the
inserted ADD/SUB instructions finish. The Disclosure Gadget
is used to monitor the data fetched by the second Speculation
Primitive.

Second, the two Speculation Primitives access different
memory addresses. The instruction sequence used is the same
as the first case, except that the memory addresses accessed
by the two Speculation Primitives are different.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RDX: a d d r e s s o f a n o t h e r uncached memory b u f f e r
3 / / ∗(%RDX) = %RBX
4 / / %RCX: i l l e g a l a d d r e s s #1
5 / / %RAX: i l l e g a l a d d r e s s #2 whose d a t a i s 0 x42000
6 / / −−−
7 / / Windowing Gadget
8 sub %rbx , %r a x
9 sub %rbx , %r c x

10 movq (% rdx) , %rbx
11 / / −−−
12 / / S p e c u l a t i o n P r i m i t i v e #1
13 movq (%rcx , %rbx , 1) , %r c x
14 / / −−−
15 / / s p e c i a l i n s e r t e d i n s t r u c t i o n s f o r t h e e x p e r i m e n t
16 add %rbx , %r a x
17 [add $1 , %r a x]
18 [sub $1 , %r a x]
19 . . .
20 / / −−−
21 / / S p e c u l a t i o n P r i m i t i v e #2
22 movq (% r a x) , %r a x
23 / / −−−
24 / / D i s c l o s u r e Gadget
25 movq (%rbx , %rax , 1) , %rbx

Listing 6: The effects of P1 on the other execution units

Experiments and expected observations. In both tests, the
relevant data are stored in the L1D cache. As shown in Fig. 4,
the events with black labels describe the first Speculation
Primitive, and the ones with blue labels describe the second.
By delaying the execution of the second Speculation Primitive,
P1 of the first Speculation Primitive can happen before the
second Speculation Primitive fetches the secret data. Therefore,
in the experiment, we gradually inserted more instructions
between the two Speculation Primitive to delay the start of
the second Speculation Primitive.

Results. In both experiments, regardless of whether the two

Speculation Primitives accesses the same memory addresses or
not, by gradually inserting instructions between them, we never
witnessed that the received covert-channel signal changes from
the correct value to zero. Instead, we only observed that
after some threshold, the signal disappears. This suggests that
P1 of the first Speculation Primitive does not influence the
other execution units (by zeroing their results) but its P2
does (by squashing their execution). Therefore, P1 of the first
Speculation Primitive does not affect other execution units.

Conclusion: Performing transient execution attacks with
two or more Speculation Primitive does not increase the
exploitability.

3) P1 on Execution Engine: To confirm that P1 has nothing
to do with the speculation window, we show that P1 does not
influence other components of the execution engine, e.g., by
squashing speculative µops in ROB or altering code fetching
in the front end.

Particularly, we define speculation window as the maximal
number of CPU cycles from the beginning of the specula-
tive execution till all speculatively executed instructions are
squashed. SPEECHMINER enables us to indirectly measure the
speculation window in the following test.

Instruction sequences. The design is close to Listing 4. The
only difference is that after Line 9, a memory load instruction
(i.e., movq (%rax, %rbx, 1), %rax) is added.

Experiments and expected observations. The strategy of
the test is to change the latency of P1 while fixing the
latency of P2. If the measured speculation window does not
change according to P1 latency, P1 has no effect on the entire
execution engine.

To change the latency of P1, we control the TLB status
of the page storing the secret data—by preloading or flushing
the TLB entry. In this way, P1 of the Speculation Primitive
changes accordingly.

To fix P2 latency, one additional memory load instruction
is added in the windowing gadget, which begins to execute at
the same time as the Speculation Primitive and the Disclosure
Gadget. The goal of this instruction is to delay the retirement
of all subsequent instructions, so that the retirement of the
Speculation Primitive waits on the retirement of this memory
load instruction. In this way, the P2 latency is not determined
by the the Speculation Primitive itself, which changes accord-
ing to TLB presence, but by the retirement of the memory
load instruction. To achieve this goal, the data to be loaded
by this instruction is placed in L2 cache and the TLB of the
corresponding page is flushed.

Results. When changing the P1 latency, we did not observe
any changes in the speculation window by counting the max-
imal ADD/SUB instruction numbers in the Disclosure Gadget
that still allows the last covert channel access instruction to
execute.

Conclusion: P1 does not affect the entire execution engine;
altering P1 does not change the speculation window.

8

C. Understanding Effects of P2

The following test aims to confirm that P2 squashes all
speculative instructions and P2 can be manipulated.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RCX: i l l e g a l a d d r e s s whose d a t a i s 0 x42000
3 / / −−−
4 / / Windowing Gadget
5 movapd \%xmm0, \%xmm1
6 addpd \%xmm1, \%xmm0
7 [c p u i d]
8 mulpd \%xmm1, \%xmm0
9 . . .

10 movapd \%xmm0, \%xmm1
11 addpd \%xmm1, \%xmm0
12 mulpd \%xmm1, \%xmm0
13 / / −−−
14 / / S p e c u l a t i o n P r i m i t i v e
15 movq (% r c x) , %r c x
16 / / −−−
17 / / D i s c l o s u r e Gadget
18 [add $1 , %r c x]
19 [sub $1 , %r c x]
20 . . .
21 movq (%rbx , %rcx , 1) , %rbx

Listing 7: Tuning P2 latency.

Instruction sequences. The instruction sequence is shown
in Listing 7. As the retirement of the Speculation Primitive
only happens after that of the Window Gadget, the strategy
is to manipulate the latter and look for any changes in the
spelucation window.. The Windowing Gadget consists of 25
repeated sequences of three SSE2 instructions: MOVAPD,
ADDPD and MULPD—thus 75 instructions in total. These
floating point instructions are slow but can be executed in
parallel with the Speculation Primitive and the Disclosure
Gadget. Each of these floating point instructions has data
dependency on its predecessor.

To fine tune the retirement of the Speculation Primitive,
a CPUID instruction is inserted in the Windowing Gadget.
As the CPUID instruction serializes the execution of the
instructions before and after it (i.e., no instruction is issued
before CPUID retires), only the floating point instructions after
CPUID are effective in the Windowing Gadget. Therefore,
the retirement of the Speculation Primitive is further delayed
if there is CPUID is inserted earlier in the floating point
instructions; and vice versa. The Disclosure Gadget is of type-
II. All instructions are dependent on the Speculation Primitive.

Experiments and expected observations. For each position

0 10 20 30 40 50 60 70
effective windowing gadget length

0

20

40

60

80

100

120

140

160

sp
e
cu

la
ti
o
n
 w
in
d
o
w

Fig. 5: Size of the effective Window-
ing Gadget vs. speculation windows.

in the Windowing Gad-
get where CPUID is in-
serted, the framework
automatically alter the
number of ADD/SUB
instructions to identify
the speculation window
as in Sec. IV-B3. In this
way, the correlation be-
tween P2 and the spec-
ulation window can be
observed.

Results. In Fig. 5, the x-axis is the effective size of Windowing
Gadget (tuned by moving the position of CPUID) and the y-
axis is the speculation window. By gradually moving the posi-

tion of CPUID from the beginning of the Windowing Gadget
to the end, which changes the effective length of Windowing
Gadget, the speculation window also grows accordingly. Prior
studies [23] have reported the speculation window of certain
attack variants. However, our experiment suggests that it is not
meaningful to report the size of the speculation window as it
can be changed in manners described above. Despite that, the
speculation window is still limited by the size of the ROB. In
Fig. 5, the maximum speculation window is about 140 cycles,
reflecting the ROB size of greater than 140 instructions (as
each ADD/SUB instruction takes 1 cycle). And this is already
big enough for covert channels to transmit data through one
memory operation at a time.

Conclusion: The speculation window of any Speculation
Primitive can be altered by delaying its P2.

D. Investigating Race Conditions

A successful exploitation of SPEECH depends on the out-
come of the race conditions: (i) Data fetching latency must
be lower than P1 latency, and (ii) speculative covert channel
transmission should be faster than P2. As such, we leverage
SPEECHMINER to investigate the following questions:

• Is it possible to quantitatively measure the race conditions?
• Is it possible to control the outcomes of the race conditions?

1) Revisiting Race Condition II: Sec. IV-C already demon-
strated that we are able to quantitatively measure Race Condi-
tion II by evaluating the speculation window. Moreover, Fig. 5
suggests that by altering the retirement of the Windowing
Gadget, the attacker is able to delay P2 of the Speculation
Primitive.

Conclusion: The attacker can always win Race Condition
II by delaying P2 of the Speculation Primitive.

2) Measuring SPEECH Exploitability: As the outcome of
Race Condition II can be controlled, a successful attack de-
pends solely on the outcome of Race Condition I. Therefore, by
measuring the outcome of Race Condition I, SPEECHMINER
enables automated tests of the exploitability of all possible
exception-based variants on various processors. It leverages
its ability to enumerate possible combinations of execution
conditions such as cache and TLB presence to determine the
exploitability under the most optimal condition.

We performed tests on 9 machines (2 laptops, 5 desktops
and 1 cloud VM). All tested machines run Ubuntu 16.04
with Linux kernel 4.4.0-137 (or 4.4.0-141 for compatibility
issues on newer hardware) and KPTI is turned off. All the
Intel microcode versions are rolled back to version 20171117
(except for Coffee Lake, which does not have older microcode,
and the cloud VM, which we cannot control). The AMD
microcode version is 3.20180515.1. The test can be extended
to evaluating patched microcode and countermeasures, such
as KPTI [21] and PTE inversion [22]. We would like to open
source SPEECHMINER to enable other researchers to perform
tests in other settings.

Instruction sequences. As shown in Listing 8, the Windowing
Gadget has a memory load instruction that retires slowly due

9

to long latency of memory access, but it does not have depen-
dency on the previous instructions, nor does any subsequent
instructions depend on it. It is used to ensure that the retirement
of the Speculation Primitive (the P2 latency) is sufficiently
delayed.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RDX: a d d r e s s o f a n o t h e r uncached memory b u f f e r
3 / / ∗(%RDX) = %RBX
4 / / %RCX: i l l e g a l a d d r e s s whose d a t a i s 0 x42000
5 / / −−−
6 / / windowing g a d g e t
7 movq (% rdx) , %rdx
8 / / −−−
9 / / s p e c u l a t i o n p r i m i t i v e

10 movq (% r c x) , %r c x / / c o u l d be any i l l e g a l i n s t .
11 / / −−−
12 / / d i s c l o s u r e g a d g e t
13 movq (%rbx , %rcx , 1) , %rbx

Listing 8: Exploitability test with P1 measurement.

Experiments and expected observations. Each tested instruc-
tion sequence was executed under a variety of conditions, with
varying data access latency (cached in L1D, L2, or LLC) and
address translation latency (whether or not TLB entries are
created for the corresponding pages). SPEECHMINER is able
to enumerate all possible combinations to achieve the optimal
condition. In each test, if the Disclosure Primitive receives
the correct signal from the covert channel, the vulnerability
is exploitable. Otherwise, if a zero signal is received, the
vulnerability is not exploitable as the P1 latency is shorter than
data available latency. However, if no signal can be received,
it suggests speculation is not allowed by the variant.

Results. The results are shown in Table I and a reference of
the tested variant names to their description can be found in
Appendix A. Some variants are unable to be tested due to
lack of hardware support or OS support on certain machines
and they are marked as N/A. On the tested Intel machines,
Meltdown-US (accessing supervisor memory page from user
space) and Meltdown-RW (writing to a read-only memory
page) are exploitable while the AMD machine shows no
speculation. When testing Meltdown-Present (Present flag
cleared) and Meltdown-Reserved (Reserved flag set), signal
handler cannot be used since the whole OS will crash. Thus,
only the machines also equipped with Intel TSX [15] are tested
and reported. Loading restricted registers (CR4 and MSR) on
all tested machines show that no speculative load is allowed.
Meltdown-MPK (bypassing the restriction of memory protec-
tion keys) could only be tested on Amazon EC2 E5 instance
and it was found exploitable. Meltdown-FP (accessing a lazy-
context-switch float pointer register) is also found exploitable
on Intel machines. Meltdown-BR (accessing an array with an
over-range index) is found exploitable on all tested machines
although the BOUND instruction raises an exception when
it discovers the violation. In 32-bit mode, segmentation is
enabled and thus relevant variants could be tested. Most of
them are not exploitable or does not allow further speculation
at all, since paging checks has to wait until segmentation
translation produces a linear address while segmentation check
begins at the same time as the translation. However, still some
of them are found exploitable on either Intel or AMD platform.

In our experiments, a few new variants were found by
the SPEECHMINER framework. We have reported these new

variants to Intel and AMD already.

• Supervisor mode access violating SMAP (Intel & AMD).
Supervisor Mode Access Prevention (SMAP) forbids code
in the kernel mode from accessing to user-space addresses.
However, as shown in Table I, on some of our tested ma-
chines, SMAP can be bypassed using speculative execution
when the secret data is in the L1 cache. When the data is
in lower-level caches, zero signal is captured.

• Supervisor mode access bypassing MPK (Intel). When a
user space page is set to be inaccessible using Memory
Protection Key (MPK), its accesses from kernel code is also
forbidden, which triggers a page fault exception. However,
as demonstrated on the tested cloud server (see Table I), if
the secret data is already in the L1 cache, it can be leaked
through speculatively executed Disclosure Gadget.

• Memory writes to read-only data segments (Intel). Segmen-
tation is used in the 32-bit mode. However, memory writes
to a read-only data segments can be speculatively used by
following instructions. In this case, the caching and TLB
status does not affect the exploitability. This vulnerability
is similar to the Meltdown-RW [16], but its security
implication is different: Meltdown-RW takes advantage
of store-to-load forwarding. As the store buffer is indexed
by the linear address (not logical address), the forwarding is
speculative as the logical-to-physical translation is not yet
finished. Therefore, it is not surprising that the permission
check (using flags in the PTE) happens after the store-to-
load forwarding. However, in contrast, the segmentation
check is performed during the translation from logical
addresses to linear addresses. Thus, when the store buffer
queues the store instruction to the given linear address [9],
the segmentation access privilege check should already be
done. However, our test suggests that this is not the case
as a following load could directly use the store value. This
validates the conclusion of the recent Fallout attack [29]
that store buffers predict aggressively using only the lowest
bits of addresses.

• Reading from a logical address over the limit of seg-
ment (AMD). When tested in 32-bit mode, a load to a
logical address beyond the segment limit is forbidden,
which triggers an exception. However, we have found that
the segmentation check can be bypassed by speculative
execution. The vulnerability is exploitable when the TLB
entry of the page is present and the data is cached in the
L1 cache. The same vulnerability cannot be found in Intel
processors.

Conclusion: SPEECHMINER enables automated tests of
SPEECH vulnerabilities on various processors. It detects
several new variants of transient execution attacks.

Extended study on state-of-the-art mitigation. KPTI [21] is
a software solution designed to prevent the exploitation of the
Meltdown-US vulnerability, but not removing the vulnerability
from hardware. Since the test cases of SPEECHMINER are
designed by explicitly setting the bits in PTE, KPTI should
not place any influence on it. On the other hand, the existing
microcode patches are for Spectre variants and L1TF only [28]
and thus is expected not to affect the tests. We performed the
tests on Laptop 1 with the latest microcode patch and found

10

Laptop 1 Laptop 2 Desktop 1 Desktop 2 Desktop 3 Desktop 4 Desktop 5 Desktop 6 Cloud 1
Variant KabyLake KabyLake Haswell-EP SandyBridge Westmere-EP CoffeeLake KabyLake AMD EPYC Skylake-SP

PTE (Present) Y N/A N/A N/A N/A Y Y N/A Y
PTE (Reserved) Y N/A N/A N/A N/A Y Y N/A Y
PTE (US) Y Y Y Y Y Y Y R Y
Load CR4 R R R R R R R R R
Load MSR (0x1a2) R R R R R R R N/A N/A
Protection Key (User) N/A N/A N/A N/A N/A N/A N/A N/A Y
Protection Key (Kernel) N/A N/A N/A N/A N/A N/A N/A N/A Y
SMAP violation Y Y N/A N/A N/A Y Y Y* Y**
PTE (write w/ RW=0) Y Y* Y Y Y Y Y R Y
Load xmm0 (CR0.TS) Y Y Y Y Y Y Y N/A N/A
BOUND (32-bit) Y Y Y Y Y Y Y Y Y
DS Over-Limit (32-bit) N N N N N N N Y N
SS Over-Limit (32-bit) N N N N N N N Y N/A
DS Not-Present (32-bit) R R R R R R R R R
SS Not-Present (32-bit) R R R R R R R R R
DS Execute-Only (32-bit) R R R R R R R R R
CS Execute-Only (32-bit) R R R R R R R R R
DS Read-Only (write, 32-bit) Y Y Y Y Y Y Y R Y
SS Read-Only (32-bit) R R R R R R R R R
DS Null (32-bit) N N N N N N N R N
SS Null (32-bit) R R R R R R R R R
SS DPL 6= CPL (32-bit) R R R R R R R R R

TABLE I: Exploitability evaluation on different machines. Y: exploitable. N: non-exploitable. R: no speculative execution. N/A: unable to test.
Y*: both expected data and zero data are captured in all covert channel reloads. Y**: the only exploited case with success rate not 100%
(about 60%). Laptop 1: i7-7820HQ (Kaby Lake). Laptop 2: i7-7700HQ (Kaby Lake). Desktop 1: Xeon E5-1607v3 (Haswell-EP). Desktop 2:
i3-2120 (Sandy Bridge). Desktop 3: Xeon E5620 (Westmere-EP). Desktop 4: Xeon E-2124G (Coffee Lake). Desktop 5: i7-7700 (Kaby Lake).
Cloud 1: Amazon EC2 C5 instance. Desktop 6: AMD EPYC 7251.

all vulnerabilities still present, including Meltdown-US.

3) Quantitatively Measuring P1 Latency: A more powerful
measurement could be done with SPEECHMINER to quantita-
tively measure the relative latency of P1 compared to data
fetching.
1 / / %RBX: a d d r e s s o f uncached c o v e r t c h a n n e l b u f f e r
2 / / %RCX: i l l e g a l a d d r e s s whose d a t a i s 0 x42000
3 / / −−−
4 / / S u p p r e s s i n g P r i m i t i v e
5 [movq (% r a x) , %r a x] / / l e g a l a c c e s s
6 [movq (% r a x) , %r a x] / / l e g a l a c c e s s
7 . . .
8 movq (% r a x) , %r a x / / s u p p r e s s i n g w/ e x c e p t i o n
9 / / −−−

10 / / S p e c u l a t i o n P r i m i t i v e
11 movq (% r c x) , %r c x / / c o u l d be any i l l e g a l i n s t .
12 / / −−−
13 / / D i s c l o s u r e Gadget
14 [add $1 , %r c x]
15 [sub $1 , %r c x]
16 . . .
17 movq (%rbx , %rcx , 1) , %r c x

Listing 9: Quantitative measurement of P1 latency

Instruction sequences. The construction of the instruction se-
quence is different from other tests as a Suppressing Primitive
is needed in the test. The Suppressing Primitive precedes all
other components in order to conceal the effect of executing
the instruction sequence. This is achieved by ensuring that the
instructions executed in all other components never retire. In
the example of Listing 9, the Suppressing Primitive is simply
an illegal memory load from address 0, but it can also be
implemented using conditional branches, indirect jumps, or
retpoline. The Suppressing Primitive creates a fixed speculation
window for the rest of the instruction sequence to execute. Be-
cause it is desired that this speculation window is greater than
the one created by the Speculation Primitive, the Suppressing
Primitive includes a few memory loads before the faulting

Fig. 6: Illustration of quantitatively measurement of P1 latency.

instruction and leverages the pointer chasing technique [1]
to further enlarge its speculation window. The speculation
window cannot be longer than the size of the ROB.

A type-II Disclosure Gadget is used; all its instructions
depend on the Speculation Primitive. Thus, the Disclosure
Gadget only begins execution after the data is returned from
the Speculation Primitive, regardless of its correctness.

Experiments and expected observations. By flushing the
secret data to memory, the framework ensures that a zero
data is returned by the Speculation Primitive. Let TP1 be the
number of cycles to retrieve the zero data by the Speculation
Primitive, Tspec1 be the speculation window of the Suppressing
Primitive, and Tdelay be the latency for the Speculation Prim-
itive to begin execution, which are both fixed. The number
of inserted instructions in the Disclosure Gadget is tuned to
determine Tspec2, which is the speculation window of the
Speculation Primitive. As the Disclosure Gadget starts after
the Speculation Primitive has retrieved the data, we have
Tdelay + TP1 + Tspec2 = Tspec1 (shown in Fig. 6).

To estimate TP1, a control test is run. In the control test,
the Speculation Primitive accesses a legal data, which does not
trigger exceptions. But still, the execution will be reverted due
to the Suppressing Primitive. In this case, the number of cycles

11

to retrieve the legal data is Tdata. With all other conditions
unchanged, we have Tdelay+Tdata+Tspec2′ = Tspec1. Without
the need of calculating the exact values of Tspec1 and Tdelay,
the relationship between Tdata and TP1 can be estimated in a
differential manner: Tdata − TP1 = Tspec2 − Tspec2′ .

Results. We ran the tests on Meltdown-US as an example and
found that Tdata−TP1 = 0, which means P1 and L1 cache data
fetching arrives at the same cycle. This also explains why most
attacks cannot work when the data is in higher-level caches
(unless the effects of prefetching is exploited, see Sec. IV-E).

We also performed the tests on negative results in Table I.
For example, when accessing data beyond the segment limit,
data in Table I suggest the vulnerability is not exploitable. By
running the test to quantitatively measure TP1, we found out
that Tdata − TP1 = 0, which means P1 come right before
the data is available. However, when data is available in the
L2 cache, we find Tdata − TP1 = −12, which suggests P1
come 12 cycles earlier than the data is available. Due to
SPEECHMINER’s ability to quantitatively measure a negative
relative P1 latency, we are able to affirmatively claim the
inexploitability of certain variants on given hardware.

Conclusion: SPEECHMINER enables quantitative measure-
ment of Race Condition I, providing security assurance for
the negative results of the exploitability tests.

4) Controlling Race Condition I: The ability to quan-
titatively measure the relative P1 latency also enables the
exploration of the controllability of Race Condition I. Given
a certain variant of SPEECH vulnerabilities, we can leverage
SPEECHMINER to alter one factor (e.g., TLB entry status)
while keeping all others unchanged. Then, SPEECHMINER is
able to determine how the relative P1 changes according to the
tested factor. For example, we found that the absence of TLB
entry leads to a decrease of the relative P1 latency by over 100
cycles when testing the variant violating segmentation limit.
However, we did not find such an effect when testing it on
Meltdown-US attacks. We leave a comprehensive examination
of all variants and all possible factors to future work.

E. Speculation Primitive as Prefetcher

Given the study on the race conditions for exploitation in
ONE round of attack, an attack could be guided to create an
optimal attack scenario. However, not all of the resources are
within the control of the attacker. Thus, the following question
is whether the attacker is able to change those conditions that
controls/influences the race condition. How a sophisticated at-
tacker can manipulate victim is beyond the scope of this paper,
so we only study whether ONE round of attack itself benefits
the race conditions of next round of attack. Take Meltdown-
US and Meltdown-P (the base of L1TF) as an example, the
only influencing condition towards the exploitability is data
fetching latency as analyzed in Sec. IV-D4. We are unable to
test buffers for now, so we focus on caching.

Some Speculation Primitive may only lead to exploitable
vulnerability when the data fetching latency is small—the data
is already cached in the L1 cache—but others may succeed
even when the data is completely uncached. We speculate
the root cause is that some Speculation Primitive, though

failed to extract secret from L2, LLC, or memory, could work
as a prefetcher to preload secret data into L1 caches so as
to facilitate future attacks of the same kind. We empirically
validate this hypothesis.

Experiments. In this test, Windowing Gadget and Disclosure
Gadget are unnecessary. The experiment is conducted in three
steps: First, the secret data to be accessed by the Speculation
Primitive is preloaded (from the shadow virtual address) into
the LLC or memory. Second, the tested Speculation Primitive
is executed N times (with the exceptions suppressed by the
SPEECHMINER framework). Third, the data is reloaded from
the shadow address and the latency is measured. Two versions
of this experiment were tested: (1) N = 0; (2) N = 1000.

Results. When the Meltdown-US variant is selected as the
Speculation Primitive, the result of the experiment is shown in
Fig. 7. In particular, Fig. 7a (N = 0) and Fig. 7b (N = 1000)
show the latency of reloading the secret data that is already
in the LLC. Clearly with speculative prefetching, the reload
latency drops to the range that is close to L2 cache hit. In
addition, if a Disclosure Primitive is used to monitor the covert
channel while measuring the reload latency, 1/1000 of the time
the correct signal can be received while other times a zero
signal is. Because in our previous test we have confirmed that
only when data is placed in the L1 cache could it be leaked
through speculative execution, we conclude that if the data is
already in the the L2 cache, the Speculation Primitive has a
probability of prefetching it into the L1 cache. In contrast, in
Fig. 7c and Fig. 7d, the reload latency distribution does not
change with and without prefetching.

We conducted another experiment to validate our analysis.
This time, the Speculation Primitive accesses a memory page
with its present flag cleared. We repeated the experiments
with the data originally stored in the LLC. The results are
shown in Fig. 7e (N = 0) and Fig. 7f (N = 1000) . Terminal
faults have different prefetching effects. After 1000 rounds
of Speculation Primitive execution, although some data is
preloaded to L2, the peak still keeps at around 70 cycles (LLC).
Only zero signals can be received from the covert channel.

Conclusion: In Meltdown-US, if the data is already in the
LLC, the Speculation Primitive may prefetch it to the L2
cache and with some probability the L1 cache; if the data is
in the memory, the Speculation Primitive cannot prefetch it
to the LLC. In Meltdown-P, prefetching with terminal faults
is almost impossible to load the data to L1D.

Misunderstanding regarding Meltdown-US. Since the publi-
cation of the first Meltdown-US paper, there has been a debate
whether the attack can be successful if the data is not cached
(i.e., stored in the memory). Our work concludes that with only
one round of Meltdown-US attack, it is only possible to leak
the data if it is already in the L1 cache. However, as in most
demonstrated Meltdown-US attacks, multiple rounds of attack
are performed, the secret data can be prefetched to the L1
cache if it is already in the LLC or L2. These findings coincide
with our conclusions. Our study provide an explanation for the
prior works. In fact, no one has demonstrated Meltdown-US
to leak non-cached data—unless the data has been preloaded
into the Line Fill Buffer by a thread running in parallel. We

12

20 30 40 50 60 70 80 90>100
0

1e5

2e5

3e5

4e5

5e5

(a) Data in LLC, w/o prefetching.

20 30 40 50 60 70 80 90>100
0

1e5

2e5

3e5

4e5

5e5

(b) Data in LLC, w/ prefetching.

160 165 170 175 180 185>190
0

2e5

4e5

6e5

8e5

(c) Data in memory, w/o prefetching.

160 165 170 175 180 185>190
0

2e5

4e5

6e5

8e5

(d) Data in memory, w/ prefetching.

20 30 40 50 60 70 80 90>100
0

2e5

4e5

6e5

8e5

(e) Terminal fault, data in LLC, w/o
prefetching.

20 30 40 50 60 70 80 90>100
0

2e5

4e5

6e5

8e5

(f) Terminal fault, data in LLC, w/
prefetching.

Fig. 7: Reload latency distribution after using Speculation Primitive
as a prefetcher.

have confirmed this fact with the Meltdown-US authors. On the
other hand, our study also confirms that L1TF attacks can only
succeed when data is already in the L1 cache, the mechanisms
of which have not been thoroughly discussed in prior works.

F. Misprediction Handling and Spectre-type Attacks

Branch misprediction handling. As an extended study, the
two-phase model also applies to Spectre-type misprediction
handling. When branch instructions are executed in the back
end to determine the branch target address, they leverage the
branch prediction units (BPU) to make predictions before the
execution completes to improve performance. BPU is a front-
end component, making instruction fetching to be immediately
redirected to the predicted branch target address. However,
if the branch execution unit detects a mismatch between
the predicted target address and the true target address, a
misprediction is captured by the processor. We expect the mis-
prediction handling is different from exception handling: in P1
of misprediction handling, everything required for the handling
is performed. The true branch target address is passed to the
front end right away once it is determined. All subsequent
µops in ROB are squashed. The IDQ is also flushed. There is
no point for the handling to wait until requirement, especially
for performance consideration.

Test goals. The test aims to verify whether the speculative

1 / / %RAX: a d d r e s s o f uncached memory b u f f e r
2 / / %RCX: memory a d d r e s s whose d a t a i s an a d d r e s s
3 / / t o a c o v e r t c h a n n e l b u f f e r
4 / / −−−
5 / / windowing g a d g e t
6 [movq (% r a x) , %r a x]
7 / / −−−
8 / / s p e c u l a t i o n p r i m i t i v e
9 b ra nc h / / p o i s o n e d t o d i s c l o s u r e g a d g e t

10 . . .
11 / / −−−
12 / / d i s c l o s u r e g a d g e t
13 movq (% r c x) , %r c x
14 [add $1 , %r c x]
15 [sub $1 , %r c x]
16 . . .
17 movq (% r c x) , %r c x

Listing 10: Examing misprediction handling.

execution is terminated as soon as the prediction is found to
be incorrect, i.e., at P1 of the branch instruction, in contrast
to at P2 of the exception handling.

Experiments. It is already known that P2 can be delayed by
deferring the retirement of the branch instruction. Thus, the key
idea of the experiment is to determine whether the speculative
window grows accordingly.

The experiment still follows the basic design of the in-
struction sequences, but the Speculation Primitive is now a
branch instruction. Following the sample code in Listing 10,
the branch instruction is poisoned to speculatively execute
the Disclosure Gadget. The first speculative instruction in
the Disclosure Gadget loads a value. The last instruction
uses this value as the address of a covert channel buffer.
Then SPEECHMINER gradually inserts as many ADD/SUB
instructions between them as possible for the last instruction
to still be executed. The execution of the last instruction is
determined using a FLUSH-RELOAD covert channel Disclosure
Primitive. The speculative window is measured by counting the
maximum number of permitted ADD/SUB instructions.

The experiment requires a differential analysis. In the first
run of the test, no Windowing Gadget is implemented. In order
to slow down the retirement of the branch instruction, a slow
memory load instruction is placed in the Windowing Gadget
in the second run for comparison. Given different P2 latency,
we observe whether the speculative window are also different.

Results. Compared to exception handling for Meltdown-type
attacks, misprediction handling is known to be exploitable.
The only characteristics of interest is the speculation window.
During our experiments, it is found that the speculation win-
dow remains unchanged with or without the slow Windowing
Gadget. Therefore, we conclude that the speculation window of
a branch instruction is only determined by P1 but not P2. This
is reasonable since branch prediction is designed to optimize
performance. Squashing the instructions on the wrong path
as soon as possible helps speeding up the execution of the
instructions on the correct path.

Conclusion: Misprediction is handled at P1. Speculative
execution stops as soon as misprediction is captured.

13

V. DISCUSSION

Extending SPEECHMINER. SPEECHMINER can be extended
to analyze other SPEECH variants systematically. For example,
the recently disclosed RIDL and Zombieload attacks exploit
processor internal buffers (e.g., LFB). Specifically, the Data
Accessibility Controller can be extended to control the status
of these buffers. We will leave such implementation to future
work. In addition, hardware extensions such as SGX, TSX,
and VMX can also be tested by SPEECHMINER. However,
some difficulties may arise: First, it is impossible to identify a
comprehensive list of faults for these extensions. Second, some
faults may be handled silently, without triggering exceptions.

Limitation. There are still limitations to SPEECHMINER and
we also consider countering them in the future work. First,
SPEECHMINER requires some manual efforts to construct the
tests from the exception lists collected from vendor manu-
als. For each exception type in the manual, we still need
to determine whether it involves security protection (which
is desired) and if so, whether it forms a one-instruction
or a two-instruction Speculation Primitive, as demonstrated
in Appendix A. Then based on the conditions to trigger
the exception, we need to manually select a Speculation
Primitive and develop scripts to automate the tests. Second,
SPEECHMINER is unable to perform tests on the variants that
trigger micro-architecture events that cannot be unobserved
by the Disclosure Gadget (using covert channels). Third,
SPEECHMINER cannot test exceptions not described in the
manufacturer’s manual.

VI. RELATED WORK

Closest to our study is by Canella et al. [5] that aims to
systematically categorize SPEECH attacks. In their work, these
attacks are classified into two categories: Meltdown-type [23]
and Spectre-type [17]. Meltdown-type attacks consider attacks
from untrusted but confined programs; Spectre-type attacks
assume a benign program tricked to speculatively execute
unintended control flows. Both this work and Canella et
al. [5] aim for comprehensive analyzing attack variants. While
Canella et al. focuses on attack taxonomization, however, our
work emphasizes on the understanding and modeling of fault
handling mechanisms. Moreover, a core contribution of our
work is the SPEECHMINER framework that helps automate
testing of such vulnerabilities on commodity processors. More-
over, our work provides insights into the inexploitability of
certain vulnerabilities on a particular hardware, bringing a level
of assurance to users of these machines.

Meltdown-type attacks. Meltdown-type attacks can be cate-
gorized according to where the secret is stole from.

• Memory in separated address spaces. The original
Meltdown-US attack [23] leverages out-of-order execution
to extract secret data from kernel-space memory. L1TF-OS
extracts OS or SMM [11, Chapter 34] memory. L1TF-VMM
accesses memory of another guest VM or the hypervisor
from a non-privileged guest VM. The recently disclosed
RIDL [35], Zombieload [30] and Fallout [29] are some-
what different from previous attacks since they leverage
processor internal buffers as a source of leakage. They

leak only in-flight data that are already in these buffers,
but meanwhile relax the constraints of address matching.

• Memory in the same address space. The Foreshadow attack
[34] (also called the L1TF attack [12]) steals secret data
from an SGX [10] enclave from the process that creates
the enclave. By clearing the present flag in the PTE of
the enclave address, it induces a page fault and thus
performs a Meltdown-like attack. Meltdown-PK [5] reads
data speculatively from a memory page protected with
Intel protection keys [11, Chapter 4.6.2]. Meltdown-BR
[5] bypasses boundary check instructions: When an array
in memory is accessed with an index over the bound,
the boundary check instructions trigger a range exceeded
exception (#BR). However, it does not prevent the out-
of-order execution from accessing the address out of the
boundary. Kiriansky et al. [16] exploits speculative writing
instead of reading. Memory writes to read-only pages raise
an exception but the results could still be speculatively used
by following instructions.

• Restricted registers. LazyFP [32] exploits lazy FPU context
switching to speculatively read register values used before
context switches, even though such accesses trigger a
device-not-available (#NM) exception. A Variant 3a dis-
closed by both ARM [4] and Intel [13] is also a Meltdown
attack but it targets the privileged system registers such
as MSR. However, during our tests, we did not find such
exploitable vulnerabilities on tested machines.

Spectre-type attacks. Prior studies on Spectre-type attacks can
be categorized by the exploited branch prediction units [5].

• Prediction History Table (PHT). The original Spectre attack
[17] poisons the PHT to enable speculative reading of out-
of-bound data. NetSpectre [31] extends this local attack to
a remote settings. In contrast, Kiriansky et al. [16] demon-
strated out-of-bound data writing using similar techniques.
OKeeffe et al. [7] poisons PHT to attack SGX enclaves.

• Branch Target Buffer (BTB). Spectre v2 [17] targets BTB
storing the branch targets of indirect branch instructions.
SGXPectre [6] makes use of this variant to steal secret
from SGX enclaves.

• Return Stack Buffer (RSB). Koruyeh et al. [18] and
Maisuradze et al. [26] demonstrated the poisoning of RSB
to trigger speculative side channels.

• Store-to-Load Buffer. Data dependency and data disam-
biguation related to the Store-to-Load Buffer (although not
a prediction unit) were exploited by Horn [8] to perform
Spectre-type attacks.

VII. CONCLUSION

This paper describes a software framework called SPEECH-
MINER, which enables systematic investigation and quantita-
tive measurement of a variety of SPEECH vulnerabilities on
commodity processors. We have applied SPEECHMINER to test
the exploitability of 21 vulnerability variants on 9 processors,
confirming prior disclosed vulnerabilities and also uncovering
new ones. Moreover, our study explains the root causes of
some observations made by prior studies and clarifies common
misunderstandings, which paves the paths for future studies.

14

ACKNOWLEDGEMENT

This work was funded in part by NSF through grants
718084, 1750809 and 1629392, and by Intel through the Side
Channel Academic Programme (SCAP).

REFERENCES

[1] “Pointer chasing,” https://en.wikichip.org/wiki/pointer chasing, 2018.
[2] AMD, “Amd processor security updates,” https://www.amd.com/en/

corporate/security-updates, 2018.
[3] ARM, “Arm speculation barrier header,” https://github.com/

ARM-software/speculation-barrier, 2018.
[4] ——, “Vulnerability of speculative processors to cache timing

side-channel mechanism,” https://developer.arm.com/support/
security-update, 2018.

[5] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” arXiv preprint
arXiv:1811.05441, 2018.

[6] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpec-
tre attacks: Leaking enclave secrets via speculative execution,” arXiv
preprint arXiv:1802.09085, 2018.

[7] P.-L. A. F. K. C. P. J. L. H. Z. Dan O’Keeffe, Divya Muthukumaran
and P. Pietzuch, “Spectre attack against sgx enclave,” https://github.
com/lsds/spectre-attack-sgx, 2018.

[8] J. Horn, “speculative execution, variant 4: speculative store bypass,”
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[9] Intel, “Method and apparatus for performing a store operation,” US
Patent, Intel Corporation, US6378062, 2002.

[10] ——, “Intel software guard extensions (intel sgx),” 2016. [Online].
Available: https://software.intel.com/en-us/sgx

[11] ——, “Intel 64 and IA-32 architectures software developer’s
manual, combined volumes:1,2A,2B,2C,3A,3B,3C and 3D,” 2017,
order Number: 325462-065US, December 2017. [Online].
Available: https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf

[12] ——, “Deep dive: Intel analysis of l1 terminal fault,”
https://software.intel.com/security-software-guidance/insights/
deep-dive-intel-analysis-l1-terminal-fault, 2018.

[13] ——, “Intel analysis of speculative execution side channels,” https:
//software.intel.com/security-software-guidance/api-app/sites/default/
files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-
White-Paper.pdf, 2018.

[14] ——, “Intel 64 and IA-32 architectures optimization reference
manual,” 2019, order Number: 248966-041, April 2019. [Online].
Available: https://software.intel.com/sites/default/files/managed/9e/bc/
64-ia-32-architectures-optimization-manual.pdf

[15] ——, “Intel transactional synchronization extensions (intel tsx)
overview,” https://software.intel.com/en-us/cpp-compiler-developer-
guide-and-reference-intel-transactional-synchronization-extensions-intel-
tsx-overview, 2019.

[16] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[17] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[18] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18),
2018.

[19] Linux, “Supervisor mode access prevention,” 2012. [Online]. Available:
https://lwn.net/Articles/517475/

[20] ——, “Memory protection keys,” 2015. [Online]. Available: https:
//lwn.net/Articles/643797/

[21] ——, “Kaiser: hiding the kernel from user space,” https://lwn.net/
Articles/738975/, 2017.

[22] ——, “Meltdown strikes back: the l1 terminal fault vulnerability,” https:
//lwn.net/Articles/762570/, 2018.

[23] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 605–622.

[25] LLVM, “[patch] d41723: Introduce the ”retpoline” x86 mitiga-
tion technique for variant #2 of the speculative execution vulner-
abilities disclosed today,” http://lists.llvm.org/pipermail/llvm-commits/
Week-of-Mon-20180101/513630.html, 2018.

[26] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 2018, pp.
2109–2122.

[27] Microsoft, “Mitigating speculative execution side channel hardware
vulnerabilities,” https://blogs.technet.microsoft.com/srd/2018/03/15/
mitigating-speculative-execution-side-channel-hardware-vulnerabilities/,
2018.

[28] ——, “Summary of intel microcode updates,” https://support.microsoft.
com/en-us/help/4093836/summary-of-intel-microcode-updates, 2019.

[29] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck,
D. Genkin, D. Gruss, B. Sunar, F. Piessens, and Y. Yarom,
“Fallout: Reading kernel writes from user space,” arXiv preprint
arXiv:1905.12701, 2019.

[30] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” arXiv preprint arXiv:1905.05726, 2019.

[31] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” arXiv preprint arXiv:1807.10535,
2018.

[32] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register state using
microarchitectural side-channels,” arXiv preprint arXiv:1806.07480,
2018.

[33] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

[34] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-
of-order execution,” in Proceedings of the 27th USENIX Security
Symposium. USENIX Association, August 2018, see also technical
report Foreshadow-NG [36].

[35] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
S&P (May 2019), 2019.

[36] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018, see also USENIX Security paper
Foreshadow [34].

[37] H. Wong, “Measuring reorder buffer capacity,” may 2013. [Online].
Available: http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

APPENDIX

A. Categorized Exception List

The categorized exception list provided below is summa-
rized from the Exception and Interrupt Reference [11, Chap-
ter 6.15]. The * and ** marks refer to one-instruction and two-
instruction template respectively as explained in Sec. III-C.
Notice that the original list does not include exceptions or pro-
tections from hardware extensions. In our categorized list and
in the current work, we do not consider hardware extensions
as well. Only some general description about the exceptions
triggered by hardware extensions is included in the list below.

15

https://en.wikichip.org/wiki/pointer_chasing
https://www.amd.com/en/corporate/security-updates
https://www.amd.com/en/corporate/security-updates
https://github.com/ARM-software/speculation-barrier
https://github.com/ARM-software/speculation-barrier
https://developer.arm.com/support/security-update
https://developer.arm.com/support/security-update
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/en-us/sgx
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://lwn.net/Articles/517475/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/762570/
https://lwn.net/Articles/762570/
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://support.microsoft.com/en-us/help/4093836/summary-of-intel-microcode-updates
https://support.microsoft.com/en-us/help/4093836/summary-of-intel-microcode-updates
https://support.google.com/faqs/answer/7625886
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

Page Table Based Data Protection

1) Page-Fault Exception (#PF)
• p bit cleared *[PTE(Present)]
• user mode accesses
◦ access to supervisor-mode page *[PTE(US)]
◦ write to read-only page **[PTE(write w/ RW=0)]
◦ CR4.PKE = 1, access to user-space page forbidden

access by MPK *[Protection Key (User)]
• kernel mode accesses
◦ CR4.SMAP = 1, access to user-space page *[SMAP

violation]
◦ CR4.PKE = 1, access to user-space page forbidden

access by MPK *[Protection Key (Kernel)]
◦ CR0.WP write to read-only page **

• reserved bits not all cleared *[PTE(Reserved)]
• An enclave access violates one of the specified access-

control requirements.
2) Virtualization Exception (#VE) - EPT violations

Segmentation Based Data Protection

1) General Protection Exception (#GP) - Segment-related
protection
• Exceeding the segment limit when accessing the CS,

DS, ES, FS, or GS segments. *[DS Over-Limit]
• Loading the DS, ES, FS, or GS register with a seg-

ment selector for an execute-only code segment. **[DS
Execute-Only]

• Reading from an execute-only code segment. *[CS
Execute-Only]

• Writing to a code segment or a read-only data segment.
**[DS Read-Only]

• Loading the SS register with a segment selector for a
read-only segment. **[SS Read-Only]

• Accessing memory using the DS, ES, FS, or GS register
when it contains a null segment selector. *[DS Null]

• Loading the SS, DS, ES, FS, or GS register with a
segment selector for a system segment. **[SS DPL 6=
CPL]

• Transferring execution to a segment that is not exe-
cutable.

• Loading the CS register with a segment selector for a
data segment or a null segment selector.

• Exceeding the segment limit when referencing a de-
scriptor table (except during a task switch or a stack
switch).

• Attempting to access an interrupt or exception handler
through an interrupt or trap gate from virtual-8086
mode when the handlers code segment DPL is greater
than 0.

2) Data Segment Not Present (#NP) *[DS Not-Present]
3) Stack Fault Exception (#SS)
• Limit violation when accessing ss register (eg. pop)

*[SS Over-Limit]
• Loading non-present stack into SS register. **[SS Not-

Present]
• Loading the SS register with the segment selector of an

executable segment or a null segment selector. **[SS
Null]

Program Instruction Based Data Protection

• BOUND Range Exceeded Exception (#BR) **[BOUND]
• Intel MPX

Other Protection

• Device Not Available Exception (#NM) - Lazy con-
text save after context switch (CR0.TS) *[Load xmm0
(CR0.TS)]
• SMM memory access protection
• General Protection Exception (#GP)
◦ Attempting to execute a privileged instruction when the

CPL is not equal to 0. (MOV (load) control/debug reg-
isters, RDMSR) *[Load CR4] & *[Load MSR (0x1a2)]

◦ Attempting to execute SGDT, SIDT, SLDT, SMSW, or
STR when CR4.UMIP = 1 and the CPL is not equal
to 0.

◦ Attempting to execute a privileged (serializing) instruc-
tion when the CPL is not equal to 0 (LGDT, LLDT,
LTR, LIDT, MOV [store] (control registers / debug
registers), LMSW, CLTS, WRMSR).

◦ Executing the INT n instruction when the CPL is
greater than the DPL of the referenced interrupt, trap,
or task gate.

Arithmetic Protection

• Overflow Exception (#OF) - INTO instruction
• x87 FPU Floating-Point Error (#MF)
• SIMD Floating-Point Exception (#XM)
• Divide Error Exception (#DE)

Non Protection

• Debug Exception (#DB)
• Breakpoint Exception (#BP) - INT3 instruction
• Invalid Opcode Exception (#UD)
• Double Fault Exception (#DF)
• Invalid TSS Exception (#TS)
• General Protection Exception (#GP)
◦ Accessing a gate that contains a null segment selector.
◦ The segment selector in a call, interrupt, or trap gate

does not point to a code segment.
◦ The segment selector operand in the LLDT instruction

is a local type (TI flag is set) or does not point to a
segment descriptor of the LDT type.

◦ The segment selector operand in the LTR instruction is
local or points to a TSS that is not available.

◦ The target code-segment selector for a call, jump, or
return is null.

◦ Using a segment selector on a non-IRET task switch
that points to a TSS descriptor in the current LDT. TSS
descriptors can only reside in the GDT. This condition
causes a #TS exception during an IRET task switch.

◦ Instruction length limit exceeded.
◦ Loading CR0 with PG=1 (paging enabled) and PE=0

(protection disabled). / Loading CR0 with NW=1 and
CD=0.

◦ Attempting to write a 1 into a reserved bit of
CR4/MSR/MXCSR/(64-bit)CR3, CR4 or CR8.

16

0 20 40 60 80 100
number of inserted instructions

0

20

40

60

80

100

si
g
n
a
l
re
ce

iv
e
d
 (
%
)

(a) Exception-based suppression.

0 20 40 60 80 100
number of inserted instructions

0

20

40

60

80

100

si
g
n
a
l
re
ce

iv
e
d
 (
%
)

(b) Retpoline-based suppression

Fig. 8: Comparison between different suppression methods.

◦ If the PAE and/or PSE flag in control register CR4
is set and the processor detects any reserved bits in a
page-directory-pointer-table entry set to 1.
◦ Referencing an entry in the IDT (following an interrupt

or exception) that is not an interrupt, trap, or task gate.
◦ (64-bit) Non-canonical address / null address memory

access.
◦ Executing an SSE/SSE2/SSE3 instruction that attempts

to access a 128-bit memory location that is not aligned
on a 16-byte boundary when the instruction requires
16-byte alignment. This condition also applies to the
stack segment.
◦ An attempt is made to clear CR0.PG while IA-32e

mode is enabled.

• Alignment Check Exception (#AC)
• Machine-Check Exception (#MC)
• Stack Fault Exception (#SS)
◦ There is not enough stack space for allocating local

variables when executing ENTER instruction.
◦ (64-bit) Non-canonical address using SS register.

B. Choosing The Best Suppressing Primitive

We explore two implementations of the Suppressing Primi-
tive: exception-based and retpoline-based. An exception-based
Suppressing Primitive is illustrated in Listing 9. The other uses
a retpoline to suppress exceptions [32]. We evaluated these
methods using the following method: Using each method, we
gradually insert ADD/SUB instructions to find the maximum
speculation window. The covert-channel tests were repeated
100,000 times for each number of inserted instructions. The
rate of receiving the covert-channel signals for each number
is illustrated in Fig. 8a and Fig. 8b, respectively. It can be
seen from the figures that the retpoline-based approach is less
desirable as the rate of receiving the signal drops gradually
when the inserted instructions increases, making it hard to
determine the speculation window. Therefore, in our test, the
exception-based approach is used.

17

	Introduction
	Modeling Speech Vulnerabilities
	Documented Instruction Execution Model
	Fetching, Decoding, Execution and Retirement
	Memory Accesses and Address Translation

	Detecting and Handling Mis-Speculation

	SpeechMiner Framework
	Architecture of SpeechMiner
	Instruction Sequences
	Speculation Primitives

	Understanding Speech Vulnerabilities
	Confirming Speculative Instruction Squash
	Understanding Effects of P1
	P1 on Current Execution Unit
	P1 on Other Execution Units
	P1 on Execution Engine

	Understanding Effects of P2
	Investigating Race Conditions
	Revisiting Race Condition II
	Measuring Speech Exploitability
	Quantitatively Measuring P1 Latency
	Controlling Race Condition I

	Speculation Primitive as Prefetcher
	Misprediction Handling and Spectre-type Attacks

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Categorized Exception List
	Choosing The Best Suppressing Primitive

