Wei Sun, Kannan Srinivsan (The Ohio State University)

ZOOX Best Paper Award Runner-Up!

Being followed by other vehicles during driving is scary and causes privacy leakage (e.g., location), which can make our blood run cold and even make run moves. Moreover, deliberately following the other vehicles may cause significant traffic accidents. The following vehicle needs to maintain an appropriate separation from the following vehicle without getting lost and uncovered. To put the driver’s privacy and safety first, it is essential to discriminate between stalking vehicles (i.e., following abnormal vehicles) and normal following vehicles. However, there are no infrastructure-free and ubiquitous in-vehicle systems that can achieve abnormal following vehicle detection while driving.

To this end, we propose P2D2, a Privacy-Preserving Defensive Driving system that can detect the abnormal following vehicles through the sensor fusion. Specifically, we will use the camera to extract each following vehicle’s following time, and use the IMU sensors (e.g., Gyroscope ) to extract our vehicle’s critical driving behavior (e.g., making a left or right turn). We harness the space diversity of IMU sensing data to remove the artifacts of road surface conditions (e.g., bumps on the road surface) on critical driving behavior (CDB) detection. Then, we leverage the machine learning-based anomaly detection algorithm to detect the abnormal following vehicles based on the following vehicle’s following time and our vehicle’s critical driving behavior within the following time. Our experimental results show the F-1 score of 97.45% for the abnormal following vehicle detection in different driving scenarios during our daily traffic commute.

View More Papers

Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation...

Xiang Li (Tsinghua University), Baojun Liu (Tsinghua University), Xuesong Bai (University of California, Irvine), Mingming Zhang (Tsinghua University), Qifan Zhang (University of California, Irvine), Zhou Li (University of California, Irvine), Haixin Duan (Tsinghua University; QI-ANXIN Technology Research Institute; Zhongguancun Laboratory), Qi Li (Tsinghua University; Zhongguancun Laboratory)

Read More

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More