Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

The increasing amount of electric vehicles and a growing electric vehicle ecosystem is becoming a highly heterogeneous environment with a large number of participants that interact and communicate. Finding a charging station, performing vehicle-to-vehicle charging or processing payments poses privacy threats to customers as their location and habits can be traced. In this paper, we present a privacy-preserving solution for grid-to-vehicle charging, vehicle-to-grid charging and vehicle to-vehicle charging, that allows for finding the right charging option in a competitive market environment and that allows for built-in payments with adjustable and limited risk for both, producers and consumers of electricity. The proposed approach builds on blockchain technology and extends a state-of-the-art protocol with payments, while still preserving the privacy of the users. The protocol is evaluated with respect to privacy, risk and scalability. It is shown that pseudonymity and location privacy (against third parties) is guaranteed throughout the protocol, even beyond a single protocol session. In addition, both, risk and scalability can be adjusted based on the used blockchain.

View More Papers

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

Digital Technologies in Pandemic: The Good, the Bad and...

Moderator: Ahmad-Reza Sadeghi, TU Darmstadt, Germany Panelists: Mario Guglielmetti, Legal Officer, European Data Protection Supervisor* Jaap-Henk Hoepman, Radbaud University, The Netherlands Alexandra Dmitrienko, University of Würzburg, Germany, Farinaz Koushanfar, UCSD, USA *attending in his personal capacity

Read More