Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

The increasing amount of electric vehicles and a growing electric vehicle ecosystem is becoming a highly heterogeneous environment with a large number of participants that interact and communicate. Finding a charging station, performing vehicle-to-vehicle charging or processing payments poses privacy threats to customers as their location and habits can be traced. In this paper, we present a privacy-preserving solution for grid-to-vehicle charging, vehicle-to-grid charging and vehicle to-vehicle charging, that allows for finding the right charging option in a competitive market environment and that allows for built-in payments with adjustable and limited risk for both, producers and consumers of electricity. The proposed approach builds on blockchain technology and extends a state-of-the-art protocol with payments, while still preserving the privacy of the users. The protocol is evaluated with respect to privacy, risk and scalability. It is shown that pseudonymity and location privacy (against third parties) is guaranteed throughout the protocol, even beyond a single protocol session. In addition, both, risk and scalability can be adjusted based on the used blockchain.

View More Papers

All the Numbers are US: Large-scale Abuse of Contact...

Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Read More

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More

C^2SR: Cybercrime Scene Reconstruction for Post-mortem Forensic Analysis

Yonghwi Kwon (University of Virginia), Weihang Wang (University at Buffalo, SUNY), Jinho Jung (Georgia Institute of Technology), Kyu Hyung Lee (University of Georgia), Roberto Perdisci (Georgia Institute of Technology and University of Georgia)

Read More

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More