Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

In this paper, we evaluate the robustness of Mobileye 630 PRO, the most popular off-the-shelf ADAS on the market today, to camera spoofing attacks applied using a projector. We show that Mobileye 630 issues false notifications about road signs projected in proximity to the car that the system is installed in. We assess how changes of the road signs (e.g., changes in color, shape, projection speed, diameter and ambient light) affect the outcome of an attack. We find that while Mobileye 630 PRO rejects fake projected road signs that consists of non-original shapes and objects, it accepts fake projected road signs that consists of non-original colors. We demonstrate how attackers can leverage these findings to apply a remote attack in a realistic scenario by using a drone that carries a portable projector which projects the spoofed traffic sign on a building located in proximity to a passing car equipped with Mobileye 630. Our experiments show that it is possible to fool Mobileye 630 PRO to issue false notification about a traffic sign projected from a drone.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 49 [1] => 47 ) ) ) [post__not_in] => Array ( [0] => 7248 ) )

Exploring The Design Space of Sharing and Privacy Mechanisms...

Abdulmajeed Alqhatani, Heather R. Lipford (University of North Carolina at Charlotte)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications...

Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)