Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

In this paper, we evaluate the robustness of Mobileye 630 PRO, the most popular off-the-shelf ADAS on the market today, to camera spoofing attacks applied using a projector. We show that Mobileye 630 issues false notifications about road signs projected in proximity to the car that the system is installed in. We assess how changes of the road signs (e.g., changes in color, shape, projection speed, diameter and ambient light) affect the outcome of an attack. We find that while Mobileye 630 PRO rejects fake projected road signs that consists of non-original shapes and objects, it accepts fake projected road signs that consists of non-original colors. We demonstrate how attackers can leverage these findings to apply a remote attack in a realistic scenario by using a drone that carries a portable projector which projects the spoofed traffic sign on a building located in proximity to a passing car equipped with Mobileye 630. Our experiments show that it is possible to fool Mobileye 630 PRO to issue false notification about a traffic sign projected from a drone.

View More Papers

Detecting Tor Bridge from Sampled Traffic in Backbone Networks

Hua Wu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration Southeast University, Ministry of Education, Jiangsu Nanjing, Purple Mountain Laboratories for Network and Communication Security (Nanjing, Jiangsu)), Shuyi Guo, Guang Cheng, Xiaoyan Hu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration…

Read More

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More

JMPscare: Introspection for Binary-Only Fuzzing

Dominik Maier, Lukas Seidel (TU Berlin)

Read More