Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University)

Best Short Paper Award Winner!

Machine learning techniques, particularly those based on deep neural networks (DNNs), are widely adopted in the development of advanced driver-assistance systems (ADAS) and autonomous vehicles. While providing significant improvement over traditional methods in average performance, the usage of DNNs also presents great challenges to system safety, especially given the uncertainty of the surrounding environment, the disturbance to system operations, and the current lack of methodologies for predicting DNN behavior. In particular, adversarial attacks to the sensing input may cause errors in systems’ perception of the environment and lead to system failure. However, existing works mainly focus on analyzing the impact of such attacks on the sensing and perception results and designing mitigation strategies accordingly. We argue that as system safety is ultimately determined by the actions it takes, it is essential to take an end-to-end approach and address adversarial attacks with the consideration of the entire ADAS or autonomous driving pipeline, from sensing and perception to planing, navigation and control. In this paper, we present our initial findings in quantitatively analyzing the impact of a type of adversarial attack (that leverages road patch) on system planning and control, and discuss some of the possible directions to systematically address such attack with an end-to-end view.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 49 [1] => 47 ) ) ) [post__not_in] => Array ( [0] => 7244 ) )

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)