Henry Xu, An Ju, and David Wagner (UC Berkeley)

Baidu Security Auto-Driving Security Award Winner ($1000 cash
prize)!

Susceptibility of neural networks to adversarial attack prompts serious safety concerns for lane detection efforts, a domain where such models have been widely applied. Recent work on adversarial road patches have successfully induced perception of lane lines with arbitrary form, presenting an avenue for rogue control of vehicle behavior. In this paper, we propose a modular lane verification system that can catch such threats before the autonomous driving system is misled while remaining agnostic to the particular lane detection model. Our experiments show that implementing the system with a simple convolutional neural network (CNN) can defend against a wide gamut of attacks on lane detection models. With a 10% impact to inference time, we can detect 96% of bounded non-adaptive attacks, 90% of bounded adaptive attacks, and 98% of patch attacks while preserving accurate identification at least 95% of true lanes, indicating that our proposed verification system is effective at mitigating lane detection security risks with minimal overhead.

View More Papers

SerialDetector: Principled and Practical Exploration of Object Injection Vulnerabilities...

Mikhail Shcherbakov (KTH Royal Institute of Technology), Musard Balliu (KTH Royal Institute of Technology)

Read More

Demo #12: Too Afraid to Drive: Systematic Discovery of...

Ziwen Wan (UC Irvine), Junjie Shen (UC Irvine), Jalen Chuang (UC Irvine), Xin Xia (UCLA), Joshua Garcia (UC Irvine), Jiaqi Ma (UCLA) and Qi Alfred Chen (UC Irvine)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

Obfuscated Access and Search Patterns in Searchable Encryption

Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Read More