Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Model inversion reverse-engineers input samples from a given model, and hence poses serious threats to information confidentiality. We propose a novel inversion technique based on StyleGAN, whose generator has a special architecture that forces the decomposition of an input to styles of various granularities such that the model can learn them separately in training. During sample generation, the generator transforms a latent value to parameters controlling these styles to compose a sample. In our inversion, given a target label of some subject model to invert (e.g., a private face based identity recognition model), our technique leverages a StyleGAN trained on public data from the same domain (e.g., a public human face dataset), uses gradient descent or genetic search algorithm, together with distribution based clipping, to find a proper parameterization of the styles such that the generated sample is correctly classified to the target label (by the subject model) and recognized by humans. The results show that our inverted samples have high fidelity, substantially better than those by existing state-of-the-art techniques.

View More Papers

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

Pablo Moriano (Oak Ridge National Laboratory), Robert A. Bridges (Oak Ridge National Laboratory) and Michael D. Iannacone (Oak Ridge National Laboratory)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More