Bristena Oprisanu (UCL), Georgi Ganev (UCL & Hazy), Emiliano De Cristofaro (UCL)

The availability of genomic data is essential to progress in biomedical research, personalized medicine, etc. However, its extreme sensitivity makes it problematic, if not outright impossible, to publish or share it. As a result, several initiatives have been launched to experiment with synthetic genomic data, e.g., using generative models to learn the underlying distribution of the real data and generate artificial datasets that preserve its salient characteristics without exposing it. This paper provides the first evaluation of the utility and the privacy protection of six state-of-the-art models for generating synthetic genomic data. We assess the performance of the synthetic data on several common tasks, such as allele population statistics and linkage disequilibrium. We then measure privacy through the lens of membership inference attacks, i.e., inferring whether a record was part of the training data.

Our experiments show that no single approach to generate synthetic genomic data yields both high utility and strong privacy across the board. Also, the size and nature of the training dataset matter. Moreover, while some combinations of datasets and models produce synthetic data with distributions close to the real data, there often are target data points that are vulnerable to membership inference. Looking forward, our techniques can be used by practitioners to assess the risks of deploying synthetic genomic data in the wild and serve as a benchmark for future work.

View More Papers

The Droid is in the Details: Environment-aware Evasion of...

Brian Kondracki (Stony Brook University), Babak Amin Azad (Stony Brook University), Najmeh Miramirkhani (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Usability of Cryptocurrency Wallets Providing CoinJoin Transactions

Simin Ghesmati (Uni Wien, SBA Research), Walid Fdhila (Uni Wien, SBA Research), Edgar Weippl (Uni Wien, SBA Research)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More