Wei Jia (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Zhaojun Lu (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Haichun Zhang (Huazhong University of Science and Technology), Zhenglin Liu (Huazhong University of Science and Technology), Jie Wang (Shenzhen Kaiyuan Internet Security Co., Ltd), Gang Qu (University…

Adversarial Examples (AEs) can deceive Deep Neural Networks (DNNs) and have received a lot of attention recently. However, majority of the research on AEs is in the digital domain and the adversarial patches are static. Such research is very different from many real-world DNN applications such as Traffic Sign Recognition (TSR) systems in autonomous vehicles. In TSR systems, object detectors use DNNs to process streaming video in real time. From the view of object detectors, the traffic sign’s position and quality of the video are continuously changing, rendering the digital AEs ineffective in the physical world.

In this paper, we propose a systematic pipeline to generate robust physical AEs against real-world object detectors. Robustness is achieved in three ways. First, we simulate the in-vehicle cameras by extending the distribution of image transformations with the blur transformation and the resolution transformation. Second, we design the single and multiple bounding boxes filters to improve the efficiency of the perturbation training. Third, we consider four representative attack vectors, namely Hiding Attack (HA), Appearance Attack (AA), Non-Target Attack (NTA) and Target Attack (TA). For each of them, a loss function is defined to minimize the impact of the fabrication process on the physical AEs.

We perform a comprehensive set of experiments under a variety of environmental conditions by varying the distance from $0m$ to $30m$, changing the angle from $-60^{circ}$ to $60^{circ}$, and considering illuminations in sunny and cloudy weather as well as at night. The experimental results show that the physical AEs generated from our pipeline are effective and robust when attacking the YOLO v5 based TSR system. The attacks have good transferability and can deceive other state-of-the-art object detectors. We launched HA and NTA on a brand-new 2021 model vehicle. Both attacks are successful in fooling the TSR system, which could be a lifethreatening case for autonomous vehicles. Finally, we discuss three defense mechanisms based on image preprocessing, AEs detection, and model enhancing.

View More Papers

Too Afraid to Drive: Systematic Discovery of Semantic DoS...

Ziwen Wan (University of California, Irvine), Junjie Shen (University of California, Irvine), Jalen Chuang (University of California, Irvine), Xin Xia (The University of California, Los Angeles), Joshua Garcia (University of California, Irvine), Jiaqi Ma (The University of California, Los Angeles), Qi Alfred Chen (University of California, Irvine)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna and Antonin Durey (Univ. Lille / Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (CNRS, Univ. Lille, Inria Lille), Clémentine Maurice (CNRS), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille / Inria / IUF), Walter Rudametkin (Univ. Lille / Inria), Yuval…

Read More

Above and Beyond: Organizational Efforts to Complement U.S. Digital...

Rock Stevens (University of Maryland), Faris Bugra Kokulu (Arizona State University), Adam Doupé (Arizona State University), Michelle L. Mazurek (University of Maryland)

Read More