Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Model inversion reverse-engineers input samples from a given model, and hence poses serious threats to information confidentiality. We propose a novel inversion technique based on StyleGAN, whose generator has a special architecture that forces the decomposition of an input to styles of various granularities such that the model can learn them separately in training. During sample generation, the generator transforms a latent value to parameters controlling these styles to compose a sample. In our inversion, given a target label of some subject model to invert (e.g., a private face based identity recognition model), our technique leverages a StyleGAN trained on public data from the same domain (e.g., a public human face dataset), uses the gradient descent or genetic search algorithm, together with distribution based clipping, to find a proper parameterization of the styles such that the generated sample is correctly classified to the target label (by the subject model) and recognized by humans. The results show that our inverted samples have high fidelity, substantially better than those by existing state-of-the-art techniques.

View More Papers

Evaluating Susceptibility of VPN Implementations to DoS Attacks Using...

Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Read More

SynthCT: Towards Portable Constant-Time Code

Sushant Dinesh (University of Illinois at Urbana Champaign), Grant Garrett-Grossman (University of Illinois at Urbana Champaign), Christopher W. Fletcher (University of Illinois at Urbana Champaign)

Read More

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

Read More

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More