Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

The increasing amount of electric vehicles and a growing electric vehicle ecosystem is becoming a highly heterogeneous environment with a large number of participants that interact and communicate. Finding a charging station, performing vehicle-to-vehicle charging or processing payments poses privacy threats to customers as their location and habits can be traced. In this paper, we present a privacy-preserving solution for grid-to-vehicle charging, vehicle-to-grid charging and vehicle to-vehicle charging, that allows for finding the right charging option in a competitive market environment and that allows for built-in payments with adjustable and limited risk for both, producers and consumers of electricity. The proposed approach builds on blockchain technology and extends a state-of-the-art protocol with payments, while still preserving the privacy of the users. The protocol is evaluated with respect to privacy, risk and scalability. It is shown that pseudonymity and location privacy (against third parties) is guaranteed throughout the protocol, even beyond a single protocol session. In addition, both, risk and scalability can be adjusted based on the used blockchain.

View More Papers

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More

PASS: A System-Driven Evaluation Platform for Autonomous Driving Safety...

Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More