Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

We assess the security of machine learning based biometric authentication systems against an attacker who submits uniform random inputs, either as feature vectors or raw inputs, in order to find an emph{accepting sample} of a target user. The average false positive rate (FPR) of the system, i.e., the rate at which an impostor is incorrectly accepted as the legitimate user, may be interpreted as a measure of the success probability of such an attack. However, we show that the success rate is often higher than the FPR. In particular, for one reconstructed biometric system with an average FPR of 0.03, the success rate was as high as 0.78. This has implications for the security of the system, as an attacker with only the knowledge of the length of the feature space can impersonate the user with less than 2 attempts on average. We provide detailed analysis of why the attack is successful, and validate our results using four different biometric modalities and four different machine learning classifiers. Finally, we propose mitigation techniques that render such attacks ineffective, with little to no effect on the accuracy of the system.

View More Papers

The Attack of the Clones Against Proof-of-Authority

Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

Read More

Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted...

Riccardo Paccagnella (University of Illinois at Urbana–Champaign), Pubali Datta (University of Illinois at Urbana–Champaign), Wajih Ul Hassan (University of Illinois at Urbana–Champaign), Adam Bates (University of Illinois at Urbana–Champaign), Christopher W. Fletcher (University of Illinois at Urbana–Champaign), Andrew Miller (University of Illinois at Urbana–Champaign), Dave Tian (Purdue University)

Read More

Adversarial Classification Under Differential Privacy

Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Read More

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More