Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

We assess the security of machine learning based biometric authentication systems against an attacker who submits uniform random inputs, either as feature vectors or raw inputs, in order to find an emph{accepting sample} of a target user. The average false positive rate (FPR) of the system, i.e., the rate at which an impostor is incorrectly accepted as the legitimate user, may be interpreted as a measure of the success probability of such an attack. However, we show that the success rate is often higher than the FPR. In particular, for one reconstructed biometric system with an average FPR of 0.03, the success rate was as high as 0.78. This has implications for the security of the system, as an attacker with only the knowledge of the length of the feature space can impersonate the user with less than 2 attempts on average. We provide detailed analysis of why the attack is successful, and validate our results using four different biometric modalities and four different machine learning classifiers. Finally, we propose mitigation techniques that render such attacks ineffective, with little to no effect on the accuracy of the system.

View More Papers

Bobtail: Improved Blockchain Security with Low-Variance Mining

George Bissias (University of Massachusetts Amherst), Brian N. Levine (University of Massachusetts Amherst)

Read More

Revisiting Leakage Abuse Attacks

Laura Blackstone (Brown University), Seny Kamara (Brown University), Tarik Moataz (Brown University)

Read More

Melting Pot of Origins: Compromising the Intermediary Web Services...

Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More