
On the Resilience of Biometric Authentication
Systems against Random Inputs

Benjamin Zi Hao Zhao
University of New South Wales

and Data61 CSIRO
benjamin.zhao@unsw.edu.au

Hassan Jameel Asghar
Macquarie University
and Data61 CSIRO

hassan.asghar@mq.edu.au

Mohamed Ali Kaafar
Macquarie University
and Data61 CSIRO

dali.kaafar@mq.edu.au

Abstract—We assess the security of machine learning based
biometric authentication systems against an attacker who submits
uniform random inputs, either as feature vectors or raw inputs,
in order to find an accepting sample of a target user. The average
false positive rate (FPR) of the system, i.e., the rate at which an
impostor is incorrectly accepted as the legitimate user, may be
interpreted as a measure of the success probability of such an
attack. However, we show that the success rate is often higher than
the FPR. In particular, for one reconstructed biometric system
with an average FPR of 0.03, the success rate was as high as
0.78. This has implications for the security of the system, as an
attacker with only the knowledge of the length of the feature space
can impersonate the user with less than 2 attempts on average.
We provide detailed analysis of why the attack is successful, and
validate our results using four different biometric modalities and
four different machine learning classifiers. Finally, we propose
mitigation techniques that render such attacks ineffective, with
little to no effect on the accuracy of the system.

I. INTRODUCTION

Consider a machine learning model trained on some user’s
data accessible as a black-box API for biometric authentica-
tion. Given an input (a biometric sample), the model outputs
a binary decision, i.e., accept or reject, as its prediction for
whether the input belongs to the target user or not. Now
imagine an attacker with access to the same API who has never
observed the target user’s inputs. The goal of the attacker is to
impersonate the user by finding an accepting sample (input).
What is the success probability of such an attacker?

Biometric authentication systems are generally based on ei-
ther physiological biometrics such as fingerprints [1], face [2],
[3], and voice [4], [5]), or behavioral biometrics such as
touch [6] and gait [7], the latter category generally used for
continuous and implicit authentication of users. These systems
are mostly based on machine learning: a binary classifier is
trained on the target user’s data (positive class) and a subset
of data from other users (negative class). This process is used
to validate the performance of the machine learning classifier
and hence the biometric system [8], [7], [9], [10], [11], [12],
[13], [14], [15], [16]. The resulting proportion of negative
samples (other users’ data) successfully gaining access (when

they should have been rejected) produces the false positive
rate (FPR, also referred as False Acceptance Rate). The target
user’s model is also verified for their own samples, establishing
the false reject rate (FRR). The parameters of the model can
be adjusted to obtain the equal error rate (EER) at which point
the FPR equals FRR.

Returning to our question, the FPR seems to be a good
indicator of the success probability of finding an accepting
sample. However, this implicitly assumes that the adversary is
a human who submits samples using the same human computer
interface as other users, e.g., a smartphone camera in case of
face recognition. When the model is accessible via an API the
adversary has more freedom in choosing its probing samples.
This may happen when the biometric service is hosted on
the cloud (online setting) or within a secure enclave on the
user’s device (local setting). In particular, the attacker is free
to sample uniform random inputs. It has previously been stated
that the success probability of such an attack is exponentially
small [17] or it can be derived from the FPR of the system [18],
[19].1

In this paper, we show that uniform random inputs are
accepted by biometric systems with a probability that is often
higher and independent of the FPR. Moreover, this applies
to the setting where the API to the biometric system can be
queried using feature vectors after processing raw input as
well as at the raw input level. A simple toy example with
a single feature can illustrate the reason for the efficacy of the
attack. Suppose the feature is normalized within the interval
[0, 1]. All of target user’s samples (the positive class) lie in
the interval [0, 0.5) and the other users’ samples (the negative
class) lie in the interval (0.5, 1]. A “classifier” decides the
decision boundary of 0.5, resulting in identically zero FRR and
FPR. However, a random sample has a 50% chance of being
accepted by the biometric system.2 The success of the attack
shows that the FPR and FRR, metrics used for reporting the
accuracy of the classifier, cannot alone be used as proxies for
assessing the security of the biometric authentication system.

Our main contributions are as follows:

1We note that these observations are made for distance-based authentication
algorithms and not machine-learning model based algorithms. See Sections
V-C and VIII for more details.

2This example is an oversimplification. In practice the training data is almost
never nicely separated between the two classes. Also, in higher dimensions
one expects exponentially small volume covered by samples from the positive
and negative classes as is explained in Section III.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24210
www.ndss-symposium.org

• We theoretically and experimentally show that in machine
learning-based biometric authentication systems, the ac-
ceptance region, defined as the region in feature space
where the feature vectors are accepted by the classifier,
is significantly larger than the true positive region, i.e., the
region where the target users samples lie. Moreover, this
is true even in higher dimensions, where the true positive
region tends to be exponentially small [20].

• As a consequence of the above, we show that an attacker
who has access to a biometric system via a black-box
feature vector API, can find an accepting sample by simply
generating random inputs, at a rate which in many cases
is higher than implicated by the FPR. For instance, the
success probability of the attack is as high as 0.78 for one
of the systems whose EER is only 0.03. The attack requires
minimum knowledge of the system: the attacker only
needs to know the length of the input feature vector, and
permissible range of each feature value (if not normalized).

• We show that the success rate of a random input attack can
also be higher than FPR if the attacker can only access the
API at the raw input level (before feature extraction). For
instance, on one system with an EER of 0.05, the success
rate was 0.12. We show that the exponentially small region
spanned by these raw random inputs rarely overlaps with
the true positive region of any user in the system, owing to
the success probability of the attack. Once again the attack
only requires minimum knowledge of the system, i.e., the
range of values taken by each raw input.

• To analyze real-world applicability of the attack, we re-
construct four biometric authentication schemes. Two of
them are physiological, i.e., face recognition [3] and voice
authentication [4]. The other two use behavioral traits,
i.e., gait authentication [21], and touch (swipes) authen-
tication [6], [22]. For each of these modalities, we use
four different classifiers to construct the corresponding
biometric system. The classifiers are linear support vector
machines (SVM), radial SVM, random forests, and deep
neural networks. For each of these systems, we ensure
that our implementation has comparable performance to
the reference.

• Our experimental evaluations show that the average ac-
ceptance region is higher than the EER in 9 out of
16 authentication configurations (classifier-modality pairs),
and only one in the remaining 7 has the (measured) average
acceptance region of zero. Moreover, for some users this
discrepancy is even higher. For example, in one user model
(voice authentication using random forests) the success rate
of the random (feature) input is 0.55, when the model’s
EER is only 0.03, consistent with the system average EER
of 0.03.

• We propose mitigation techniques for both the random
feature vector and raw input attacks. For the former, we
propose the inclusion of beta-distributed noise in the train-
ing data, which “tightens” the acceptance region around
the true positive region. For the latter, we add feature
vectors extracted from a sample of raw inputs in the
training data. Both strategies have minimal impact on
the FPR and TPR of the system. The mitigation strategy
renders the acceptance region to virtually 0 for 6 of the 16
authentication configurations, and for 15 out of 16, makes
it lower than FPR. For reproducibility, we have made our

codebase public.3

We note that a key difference in the use of machine learning
in biometric authentication as compared to its use in other areas
(e.g., predicting likelihood of diseases through a healthcare
dataset) is that the system should only output its decision:
accept or reject [23], and not the detailed confidence values,
i.e., confidence of the accept or reject decision. This makes
our setting different from membership inference attacks where
it is assumed that the model returns a prediction vector, where
each element is the confidence (probability) that the associated
class is the likely label of the input sample [24], [25]. In other
words, less information is leaked in biometric authentication.
Confidence vectors can potentially allow an adversary to find
an accepting sample by using a hill climbing approach [18],
for instance.

II. BACKGROUND AND THREAT MODEL

A. Biometric Authentication Systems

The use of machine learning for authentication is a binary
classification problem.4 The positive class is the target user
class, and the negative class is the class of one or more other
users. The target user’s data for training is obtained during
the registration or enrollment phase. For the negative class,
the usual process is to use the data of a subset of other users
enrolled in the system [27], [8], [7], [9], [10], [11], [12], [13],
[14], [15], [16]. Following best machine learning practice, the
data (from both classes) is split into a training and test set. The
model is learned over the training set, and the performance of
the classifier, its misclassification rate, is evaluated on the test
set.

A raw biometric sample is usually processed to extract
relevant features such as fingerprint minutiae or frequency
energy components of speech. This defines the feature space
for classification. As noted earlier, the security of the bio-
metric system is evaluated via the misclassification rates of
the underlying classifier. Two types of error can arise. A
type 1 error is when a positive sample (target user sample)
has been erroneously classified as negative, which forms the
false reject rate (FRR). Type 2 error occurs when a negative
sample (from other users) has been misclassified as a positive
sample, resulting in the false positive rate (FPR). By tuning
the parameters of the classifier, an equal error rate (EER) can
be determined which is the rate at which FRR equals FPR.
One can also evaluate the performance of the classifier through
the receiver operator characteristic (ROC) curve, which shows
the full relationship between FRR and FPR as the classifier
parameters are varied.

Once a biometric system is set up, i.e., classifier trained, the
system takes as input a biometric sample and outputs accept
or reject. In a continuous authentication setting, where the
user is continually being authenticated in the background, the
biometric system requires a continuous stream of user raw
inputs. It has been shown that in continuous authentication
systems the performance improves if the decisions is made on

3Our code is available at: https://imathatguy.github.io/Acceptance-Region
4We note that sometimes a discrimination model [26] may also be consid-

ered where the goal is to identify the test sample as belonging to one of n
users registered in the system. Our focus is on the authentication model. Also,
see Section VII.

2

https://imathatguy.github.io/Acceptance-Region

the average feature vector from a set of feature vectors [28],
[22], [29].

B. Biometric API: The Setting

We consider the setting where the biometric system can
be accessed via an API. More specifically, the API can be
queried by submitting a biometric sample. The response is
a binary accept/reject decision.5 The biometric system could
be local, in which case the system is implemented in a secure
enclave (a trusted computing module), or cloud-based (online),
in which the decision part of the system resides in a remote
server. We consider two types of APIs. The first type requires
raw biometric samples, e.g., the input image in case of face
recognition. The second type accepts a feature vector, implying
that the feature extraction phase is carried out before the API
query. This might be desirable for the following reasons.

• Often the raw input is rather large. For instance, in case
of face recognition, without compression, an image will
need every pixel’s RGB information to be sent to the
server for feature extraction and authentication. In the case
of an image of pixel size 60 × 60, this would require
approximately 10.8 KB of data. If the feature extraction
was offloaded to the user device, it would produce a 512
length feature embedding, which can take as little as 512
bytes. This also applies to continuous authentication which
inherently requires a continual stream of user raw inputs.
But often decisions are only made on an average of a set
of feature vectors [28], [22], [29]. In such systems, only
sending the resultant extracted average feature vector to the
cloud also reduces communication cost.

• Recent studies have shown that raw sensory inputs can
often be used to track users [30]. Thus, they convey more
information than what is simply required for authentication.
In this sense, extracting features at the client side serves
as an information minimization mechanism, only sending
the relevant information (extracted feature vectors) to the
server to minimize privacy loss.

• Since the machine learning algorithm only compares sam-
ples in the feature space, only the feature representation of
the template is stored in the system. In this case, it makes
sense to do feature extraction prior to querying the system.

From now onwards, when referring to a biometric API we
shall assume the feature vector based API as the default. We
shall explicitly state when the discourse changes to raw inputs.
Figure 1 illustrates the two APIs.

C. Threat Model and Assumptions

We consider an adversary who has access to the API to a
biometric system trained with the data of a target user whom
the adversary wishes to impersonate. More specifically, the
adversary wishes to find an accepting sample, i.e., a feature
vector for which the system returns “accept.” In the case of
the raw input API, the adversary is assumed to be in search
for a raw input that results in an accepting sample after
feature extraction. We assume that the adversary has the means
to bypass the end user interface, e.g., touchscreen or phone

5For continuous authentication systems, we assume that the decision is
returned after a fixed number of one or more biometric samples.

camera, and can thus programmatically submit input samples.
There are a number of ways in which this is possible.

In the online setting, a mis-configured API may provide the
adversary access to the authentication pipeline. In the local
setting, if the feature extractor is contained within a secure
environment, raw sensory information must be passed to this
protected feature extraction process. To achieve this an attacker
may construct their own samples through OS utilities. An ex-
ample is the Monkey Runner [31] on Android, a tool allowing
developers to run a sequence of predefined inputs for product
development and testing. Additionally, prior work [32] has
shown the possibility of compromising the hardware contained
within a mobile device, e.g., a compromised digitizer can inject
additional touch events.

Outside of literature, it is difficult to know the exact
implementation of real-world systems. However, taking face
recognition as an example, we believe our system architecture
is similar to real world facial authentication schemes, drawing
parallels to pending patent US15/864,232 [33]. Additionally
there are API services dedicated to hosting different compo-
nents of the facial recognition pipeline. Clarifai, for example,
hosts machine learning models dedicated to the extraction of
face embeddings within an uploaded image [34]. A developer
could then use any number of Machine Learning as a Service
(MLaaS) providers to perform the final authentication step,
without needing to pay premiums associated with an end-to-
end facial recognition product.

We make the following assumptions about the biometric API.

• The input feature length, i.e., the number of features used
by the model, is public knowledge.

• Each feature in the feature space is min-max normalized.
Thus, each feature takes value in the real interval [0, 1].
This is merely for convenience of analysis. Absent this,
the attacker can still assume plausible universal bounds for
all features in the feature space.

• The attacker knows the identifier related to the user, e.g.,
the username, he/she wishes to impersonate.

Beyond this we do not assume the attacker to have any
knowledge of the underlying biometric system including the
biometric modality, the classifier being used, the target user’s
past samples, or any other dataset which would allow the
attacker to infer population distribution of the feature space
of the given modality.

User Interface API Secure Enclave /
Cloud

The
Model

User/OS Space

Feature
Extractor

API Secure Enclave /
Cloud

The
Model

Features

Raw
InputSensors

User
Input

User Interface

Sensors
User
Input

Raw
Input

Raw Input API

Feature Vector API
Attack Surface

Fig. 1. The threat model and the two types of biometric API.

3

III. ACCEPTANCE REGION AND PROPOSED ATTACK

A. Motivation and Attack Overview

Given a feature space, machine learning classifiers learn
the region where feature vectors are classified as positive
features and the region where vectors are classified as negative
features. We call the former, the acceptance region and the
latter the rejection region. Even though the acceptance region
is learnt through the data from the target user, it does not
necessarily tightly surround the region covered by the target
user’s samples. Leaving aside the fact that this is desirable
so as to not make the model “overfitted” to the training
data, this implies that even vectors that do not follow the
distribution of the target user’s samples, may be accepted. In
fact these vectors may bare no resemblance to any positive or
negative samples from the dataset. Consider a toy example,
where the feature space consists of only two vectors. The
two-dimensional plane in Figure 2 shows the distribution of
the positive and negative samples in the training and testing
datasets. A linear classifier may learn the acceptance and
rejection regions split via the decision boundary shown in the
figure. This decision boundary divides the two dimensional
feature space in half. Even though there is a small overlap
between the positive and negative classes, when evaluated
against the negative and positive samples from the dataset there
would be an acceptably low false positive rate. However if
we construct a vector by uniformly sampling the two features
from the interval [0, 1], with probability 1/2 it will be an
accepting sample. If this model could be queried through an
API, an attacker is expected to find an accepting sample in
two attempts. Arguably, such a system is insecure.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

Positive Class Negative Class

Fig. 2. Example feature space separation by a linear boundary between two
classes. This demonstrates low FPR and FRR of test sample classification, yet
allows approximately 50% of the feature space to be accepted as positive.

Figure 2 illustrates that the acceptance region can be
larger than the region covered by the target user’s samples.
However, in the same example, the area covered by the target
user’s samples is also quite high, e.g., the convex hull of the
samples. As we discuss next, in higher dimensions, the area
covered by the positive and negative examples is expected to be
concentrated in an exponentially small region [20]. However,
the acceptance region does not necessarily follow the same
trend.

B. Acceptance Region

Notations. Let I := [0, 1] denote the unit interval [0, 1], and
let In := [0, 1]n denote the n-dimensional unit cube with one
vertex at the origin. The unit cube represents the feature space
with each (min-max normalized) feature taking values in I.
Let f denote a model, i.e., an output of a machine learning
algorithm (classifier) trained on a dataset D = {(xi, yi)}i∈[m],
where each xi is a feature vector and yi ∈ {+1,−1} its label.
The label +1 indicates the positive class (target user) and −1

the negative class (one or more other users of the authentication
system). We may denote a positive example in x ∈ D by
x+, and any negative example by x−. The model f takes
feature vectors x ∈ In as input and outputs a predicted label
ŷ ∈ {+1,−1}.

Definitions. Acceptance region of a model f is defined as

Af := {x ∈ In : f(x) = +1}, (1)

The n-dimensional volume of Af is denoted Voln(Af). The
definition of acceptance region is analogous to the notion of
decision regions in decision theory [35, §1.5]. We will often
misuse the word acceptance region to mean both the region
or the volume covered by the region where there is no fear
of ambiguity. Let FRR and FPR be evaluated on the training
dataset D.6 Let x ←$ In denote sampling a feature vector x
uniformly at random from In. In a random input attack, the
adversary samples x ←$ In and gives it as input to f . The
attack is successful if f(x) = +1. The success probability of
a random guess is defined as

Pr[f(x) = +1 : x←$ In]. (2)

Since the n-volume of the unit cube is 1, we immediately see
that the above probability is exactly Voln(Af). Thus, we shall
use the volume of the acceptance region as a direct measure
of the success probability of random guess. Finally, we define
the rejection region as In −Af . It follows that the volume of
the rejection region is 1− Voln(Af).

Existence Results. Our first observation is that even if the
FPR of a model is zero, its acceptance region can still be non-
zero. Note that this is not evident from the fact that there are
positive examples in the training dataset D: the dataset is finite
and there are infinite number of vectors in In, and hence the
probability of picking these finite positive examples is zero.

Proposition 3.1: There exists a dataset D and a classifier
with output f such that FRR = FPR = 0, and Voln(Af) > 0.

Proof: Assume a dataset D that is linearly separable. This
means that there exists a hyperplane denoted H(x) such that
for any positive example x+ ∈ D, we have H(x+) > 0 and
for any negative example in D we have H(x−) < 0. Consider
the perceptron as an example of a classifier which constructs
a linear model: fw,b(x) = +1 if 〈w,x〉 + b > 0, and −1
otherwise. Since the data is linearly separable, the perceptron
convergence theorem states that the perceptron learning algo-
rithm will find a solution, i.e., a separating hyperplane [36].
Intersecting this hyperplane 〈w,x〉+ b = 0 with the unit cube
creates two sectors. The sector where fw,b(x) = +1 is exactly
the acceptance region Afw,b

. The n-volume of Afw,b
cannot be

zero, since otherwise it is one of the sides of the unit cube with
dimension less than n, implying that all points 〈w,x〉+ b > 0
lie outside the unit cube. A contradiction, since FRR = 0 (there
is at least one positive example).

A non-zero acceptance region is not necessarily a threat.
Of practical concern is a non-negligible volume. Indeed, the
volume may be negligible requiring a large number of queries
to f before an accepting sample is produced. The following

6In practice, the FRR and FPR are evaluated against a subset of D called
a holdout or testing dataset.

4

result shows that there are cases in which the acceptance region
can be non-negligible.

Proposition 3.2: There exists a dataset D and a classifier
with output f such that FRR = FPR = 0, and Voln(Af) ≥
1/2.

Proof: Consider again the perceptron as an example of a
classifier. Let D be a dataset such that for all positive examples
x+, we have x+1 > 0.5, and for all negative examples x−1 <
0.5. The rest of the features may take any value in I. The
resulting data is linearly separable by the (n− 1 dimensional)
hyperplane x1 − 0.5 = 0. Initialize the perceptron learning
algorithm with w1 = 1, wi = 0 for all 2 ≤ i ≤ n, and b =
−0.5. The algorithm then trivially stops with this hyperplane.
Clearly, with this hyperplane, we have FRR = 0, FPR = 0,
and the acceptance region is 1/2.

The above examples illustrate the high probability of
success of the random input attack due to non-negligible
acceptance region. However, the example used is contrived.
In practice, datasets with a “nice” distribution as above are
seldom encountered, and the model is more likely to exhibit
non-zero generalization error (a tradeoff between FRR and
FPR). Also, in practice, more sophisticated classifiers such
as the support vector machine or deep neural networks are
used instead of the perceptron. However, we shall demonstrate
that the issue persists in real datasets and classifiers used in
practice. We remark that we are interested in the case when
Voln(Af) > FPR, since arguably it is misleading to use the
FPR as a measure of security of such an authentication system.
This could happen even when the FPR is non-zero. When and
why would this case occur? We explain this in the following.

Real Data and High Dimensions. We first discretize the
feature space. For a given positive integer B, let IB denote
the binned (or discrete) version of the interval I partitioned
into B equally sized bins. Clearly, each bin is of width 1/B.
Let InB denote the discretized feature space. Given a set of
feature values from I, we say that a bin in IB is filled if there
are > εn feature values falling in that bin, where εn is a cutoff
to filter outliers. The number of filled bins is denoted by α.
Clearly α ≤ B. See Figure 3.

0 1

εn = 2Fr
eq

ue
nc

y

Bins
Fig. 3. The binned version IB of the unit interval I. Each bin is of width
1/B (B not specified). The number of filled bins is α = 3, with a cut-off of
εn = 2.

For the ith feature, let α+
i denote the number of bins filled

by all positive examples in D. We define:

R+ :=
1

Bn

n∏
i=1

α+
i

as the volume of the true positive region. We define α−i and
R− analogously as the volume of the true negative region.
Let c ∈ [0, 1] be a constant. If each of the α+

i ’s is at most
cB, then we see that R+ = c−n. For instance, if c ≤ 1/2,
then R+ ≤ 2−n. In other words, the volume of the region
spanned by the user’s own samples is exponentially small as

compared to the volume of the unit cube. In practice, the user’s
data is expected to be normally distributed across each feature,
implying that the α+

i ’s are much smaller than B/2, which
makes the above volume a loose upper bound. The same is
true of the α−i ’s. Figure 4 shows the filled bins from one of the
features in the Face Dataset (see Section IV-A). For the same
dataset, the average true positive region is 5.781×10−98 (with
a standard deviation of ±2.074× 10−96) and the average true
negative region is 1.302×10−55 (with a standard deviation of
±2.172×10−54) computed over 10,000 iterations considering
a 80% sample of the target user’s data, and a balanced sample
of other users.7

We thus expect a random vector from In to be outside
the region spanned by the target user with overwhelming
probability. Thus, if a classifier defines an acceptance region
tightly surrounding the target user’s data, the volume of the
acceptance region will be negligible, and hence the random
input attack will not be a threat. However, as we shall show
in the next sections, this is not the case in practice.

Factors Effecting Acceptance Region. We list a few factors
which effect the volume of the acceptance region.

• One reason for a high acceptance region is that the classifier
is not penalized for classifying empty space in the feature
space as either positive or negative. For instance, consider
Figure 4. There is significant empty space for the feature
depicted in the figure: none of the positive or negative
samples have the projected feature value in this space. A
classifier is generally trained with an objective to minimize
the misclassification rate or a loss function (where, for
instance, there is an asymmetrical penalty between true
positives and false positives) [35]. These functions take
input from the dataset D. Thus, empty regions in the feature
space which do not have examples in D can be classified
as either of the two classes without being penalized during
training, resulting in a non-negligible acceptance region.

• The acceptance region is also expected to be big if there
is high variance in the feature values taken by the positive
examples. In this case, the α+

i ’s will be much closer to B,
resulting in a non-negligible volume R+.

• On the other hand, the acceptance region is likely to be
small if the variances of the feature values in the negative
examples are high. The classifier, in order to minimize
the FPR, will then increase the region where samples are
rejected, which would in turn make the acceptance region
closer in volume to the true positive region.

We empirically verify these observations in Section V. The
last observation also hints at a possible method to tighten the
acceptance region around the region spanned by the target user:
generate random noise around the target user’s vectors and
treat it as belonging to the negative class. We demonstrate the
effectiveness of this method in Section VI. Jumping ahead, if
the noise is generated from an appropriate distribution, this
will have minimal impact on the FRR and FPR of the model.

7We compute the true positive and negative region by only considering the
minimum and maximum feature values covered by each user for each feature
with binning equal to the floating point precision of the system. Thus, this is
a conservative estimate of the true positive region.

5

0.0 0.2 0.4 0.6 0.8 1.0
Value Bins

0

10

20

Fr
eq

ue
nc

y εn = 2

Target User
Other Users

Fig. 4. The histogram of feature values of one of the features in the Face
Dataset (cf. § IV-A). Here we have B = 100. The number of filled bins for
the target user is α+

i = 35 (with 400 samples), and for the negative class (10
users; same number of total samples) it is α−

i = 50. A total of 24 bins are
not filled by any of the two classes, implying that (approximately) 0.24 of
the region for this feature is empty.

IV. EVALUATION ON BIOMETRIC SYSTEMS

To evaluate the issue of acceptance region on real-world
biometric systems, we chose four different modalities: gait,
touch, face and voice. The last two modalities are used as
examples of user authentication at the point of entry into a
secured system, whilst gait and touch are often used in con-
tinuous authentication systems [37]. We first describe the four
biometric datasets, followed by our evaluation methodology,
the machine learning algorithms used, and finally our results
and observations.

A. The Biometric Datasets

1) Activity Type (Gait) Dataset: The activity type dataset
[38], which we will refer to as the “gait” dataset, was col-
lected for human activity recognition. Specifically its aim
is to provide a dataset for determining if a user is sitting,
laying down, walking, running, walking upstairs or downstairs,
etc. However, as the dataset retains the unique identifiers
for users per biometric record, we re-purpose the dataset for
authentication. This dataset contains 30 users, with an average
of 343± 35 (mean± SD) biometric samples per user, there is
an equal number of activity type samples for each user. For
the purpose of authentication, we do not isolate a specific type
of activity. Instead, we include them as values of an additional
feature. The activity type feature increases the total number of
features to 562. We will refer to these features as engineered
features as they are manually defined (e.g., by an expert) as
opposed to latent features extracted from a pre-trained neural
network for the face and voice datasets.

2) Touch Dataset: The UMDAA-02 Touch Dataset [6] is
a challenge dataset to provide data for researchers to perform
baseline evaluations of new touch-based authentication sys-
tems. Data was collected from 35 users, with an average of
3667 ± 3012 swipes per user. This dataset was collected by
lending mobile devices to the participants over a prolonged
period of time. The uncontrolled nature of the collection pro-
duces a dataset that accurately reflects swipe interactions with
constant and regular use of the device. This dataset contains
every touch interaction performed by the user including taps.
In a pre-processing step we only consider sequences with more
than 5 data points as swipes. Additionally, we set four binary
features to indicate the direction of the swipe, determined from
the dominant vertical and horizontal displacement. We retained
all other features in [6] bar inter-stroke time, as we wished to
treat each swipe independently, without chronological order.
We substitute this feature with half-time of the stroke. This
produces a total of 27 engineered touch features.

3) Face Dataset: FaceNet [3] proposes a system based on
neural networks that can effectively learn embeddings (feature
vectors) that represent uniquely identifiable facial information
from images. Unlike engineered features, these embeddings
may not be directly explainable as they are automatically
extracted by the underlying neural network. This neural net-
work can be trained from any dataset containing labeled faces
of individuals. There are many sources from which we can
obtain face datasets, CASIA-WebFace [2], VGGFace2 [39] and
Labeled Faces in the Wild (LFW) [40] are examples of such
datasets. However, with a pre-trained model, we can conserve
the time and resources required to re-train the network. The
source code for FaceNet [41] contains two pretrained models
available for public use (at the time of writing): one trained
on CASIA-WebFace, and another trained on VGGFace2. We
opt to use a model pre-trained on VGGFace28 , while re-
taining CASIA-WebFace as our dataset for classifier training.
We choose to use different datasets for the training of the
embeddings and the classifiers to simulate the exposure of the
model to never before seen data. Our face dataset is a subset of
CASIA-WebFace containing only the top 100 identities with
the largest number of face images (producing 447±103 images
per individual). This model produces 512 latent features from
input images of pixel size 160x160 which have been centered
and aligned. Recall that face alignment involves finding a
bounding box on the face on an image, before cropping and
resizing to the requested dimensions.

4) Speaker Verification (Utterances): VoxCeleb [4], and
VoxCeleb2 [5] are corpuses of spoken recordings by celebrities
in online media. These recordings are text-independent, i.e.,
the phrase uttered by the user is not pre-determined. Text-
independent speaker verification schemes depart from text-
dependent verification schemes in which the individual is
bound to repeat a pre-determined speech content. Thus, the
task of text-independent verification (or identification) is to
distinguish how the user speaks as an individual, instead of
how the user utters a specific phrase. The former objective
is an arguably harder task. Despite the increased difficulty,
researchers have trained neural networks to convert speaker
utterances into a set of latent features representing how indi-
viduals speak. These works have also released their models
to the public, increasing the accessibility of speaker verifi-
cation to developers. We opt to use the pre-trained model
of VoxCeleb [4], with utterances from VoxCeleb2 [5]. From
VoxCeleb2, we only use the test portion of the dataset, which
contains 118 Users with an average of 406 ± 87 utterances.
VoxCeleb was trained as a Siamese neural network [42] for
one-shot comparison between two audio samples. A Siamese
network consists of two identical branches that produce two
equal size outputs from two independent inputs for distance
comparison. To fit the pre-trained model into our evaluation
of ML-based models, we extract embeddings from one of the
twin networks and disregard the second branch. The 1024-
length embedding is then used as the feature vector within our
evaluation.

B. Evaluation Methodology

In our creation of biometric models for each user, we seek
to obtain the baseline performance of the model with respect

8(20180402-114759) is the identifier of pre-trained model used.

6

to the ability of negative user samples gaining access (i.e.
FPR), and the measured Acceptance Region (AR). We use
the following methodology to evaluate these metrics for each
dataset and each classification algorithm.

1) We min-max normalize each extracted feature over the
entire dataset between 0 and 1.

2) We partition the dataset into a (70%, 30%) split for training
and testing sets, respectively.

3) For both training and testing samples, we further sample
an equal number of negative samples from every other
user such that the total number of negative samples are
approximately equal to the number of samples from the
target user, representing the positive class, i.e., the positive
and negative classes are balanced.

4) Using the balanced training set from step 3, we train a two-
class classifier defining the target user set as the positive
class, and all remaining users as negative.

5) We test the trained model using the balanced testing set
from step 3. This establishes the FRR and FPR of the
system.

6) We uniformly sample one million vectors from In, where
n is the dimension of the extracted features. Testing the
set of vectors against the model measures the acceptance
region (AR).

7) We record the confidence values of the test prediction
for the user’s positive test samples, other users’ negative
test samples, and the uniformly sampled vectors. These
confidence values produce ROC curves for FRR, FPR and
AR.

8) Repeat steps 3-7 by iterating through every user in the
dataset as the target user.

Remark 4.1: In general, the decision regions (accept and
reject in the case of authentication) learned by the classifiers
can be quite complex [43]. Hence, it is difficult to determine
them analytically, despite the availability of learned model
parameters. We instead use a Monte Carlo method by sampling
random feature vectors from In where each feature value is
sampled uniformly at random from I. With enough samples
(one million used in our experiments, and averaged over 50
repetitions), the fraction of random samples accepted by the
classifier serves as an estimate of the acceptance region as
defined by Eq. 2 due to the law of large numbers.

Remark 4.2: Our evaluation of the biometric systems is
using the mock attacker model (samples from the negative
class modelled as belonging to an attacker) as it is commonly
used [44]. We acknowledge that there are other attack models
such as excluding the data of the attacker from the training
set [44]. Having the attacker data included in the training
dataset, as in the mock attacker model, yields better EER. On
the other hand, it is also likely to lower the AR of the system,
due to increased variance in the negative training dataset. Thus,
the use of this model does not inflate our results.

Remark 4.3: We have used balanced datasets in our ex-
periments, i.e., the number of positive and negative samples
being the same. It is true that a balanced dataset is not ideal
for minimizing AR; more negative samples may reduce the
acceptance region. However, an unbalanced dataset, e.g., more
negative samples than positive samples, may be biased towards
the negative class, resulting in misleadingly high accuracy [44],

[45]. A balanced dataset yields the best EER without being
biased towards the positive or negative class.

C. Machine Learning Classifiers

Our initial hypothesis (Section III) stipulates that AR is
related to the training data distribution, and not necessarily
to any weakness of the classifiers learning from the data. To
demonstrate this distinction, we elected four different machine
learning algorithms: Support Vector Machines (SVM) with a
linear kernel (LinSVM), SVM with a radial basis function
kernel (RBFSVM), Random Forests (RNDF) and Deep Neural
Networks (DNN). Briefly, SVM uses the training data to
construct a decision boundary that maximizes the distance
between the closest points of different classes (known as
support vectors). The shape of this boundary is dictated by the
kernel used; we test both a linear and a radial kernel. Random
Forests is an aggregation of multiple decision tree learners
formally known as an ensemble method. Multiple learners
in the aggregation are created through bagging, whereby the
training dataset is split into multiple subsets, each subset train-
ing a distinct decision tree. The decisions from the multiple
models are then aggregated to produce the random forest’s
final decision. DNNs are a class of machine learning models
that contain hidden layers between an input and an output
layer; each layer containing neurons that activate as a function
of previous layers. Specifically we implement a convolutional
neural network with hidden layers leading to a final layer of
our two classes, accept and reject. All four of these machine
learning models are trained as supervised learners. As such, we
provide the ground truth labels to the model during training.

The linear SVM was trained with C = 104, and default
values included within Scikit-learn’s Python library for the
remaining parameters [46]. For radial SVM we also used C =
104 while keeping the remaining parameters as default. The
Random Forests classifier was configured with 100 estimators.
DNNs were trained with TensorFlow Estimators [47] with a
varying number of internal layers depending on the dataset.
The exact configurations are noted in Appendix B.

Remark 4.4: We reiterate that our trained models are
reconstructions of past works. However, we endeavor that
our models recreate error rates similar to the originally re-
ported values on the same dataset. On Mahbub et al.’s touch
dataset [6], the authors achieved 0.22 EER with a RNDF
classifier, by averaging 16 swipes for a single authentication
session. We are able to achieve a comparable EER of 0.21
on RNDF without averaging. For face authentication, we
evaluate a subset of CASIA-Webface, consequently there is no
direct comparison. The original Facenet accuracy in verifying
pairs of LFW [40] faces is 98.87% [3], but our adoption of
model-based authentication is closer to [48], unfortunately the
authors have fixed a threshold for 0 FPR without reporting
their TPR. Nagrani, Chung and Zisserman’s voice authenti-
cator [4] reports an EER of 0.078 on a neural network. Our
classifiers achieve EERs of 0.03, 0.02, 0.04 and 0.12, which
are within range of this benchmark. Our gait authenticator
is the exception, it has not been evaluated for authentication
with it’s mixture of activity types. However, a review of gait
authentication schemes can be found at [49].

7

0.0 0.2 0.4
EER

0.00

0.25

0.50

0.75

1.00

AR

(a) Gait

0.0 0.2 0.4
EER

0.00

0.25

0.50

0.75

1.00

AR

(b) Touch

0.0 0.2 0.4
EER

0.00

0.25

0.50

0.75

1.00

AR

(c) Face

0.0 0.2 0.4
EER

0.00

0.25

0.50

0.75

1.00

AR

LINSVM
RBFSVM
RNDF
DNN

(d) Voice
Fig. 5. Individual user scatter of AR and FPR. In a majority of configurations,
there is no clear relationship between AR and FPR, with the exception of the
RBFSVM and DNN classifiers for face and voice authentication.

D. Acceptance Region: Feature Vector API

In this section, we evaluate the acceptance region (AR)
by comparing it against FPR for all 16 authentication config-
urations (four datasets and four classifiers). In particular, we
display ROC curves showing the trade-off between FPR and
FRR against the acceptance region (AR) curve as the model
thresholds are varied. These results are averaged over all users.
While this gives an average picture of the disparity between
AR and FPR, it does not highlight that for some users AR
may be substantially higher than FPR, and vice versa. In such
a case, the average AR might be misleading. Thus, we also
show scattered plots showing per-user AR and FPR, where
the FPR is evaluated at EER. The per-user results have been
averaged over 50 repetitions to remove any bias resulting from
the sampled/generated vectors. The individual user AR versus
FPR scatter plots are shown in Figure 5, and the (average) AR
curves against the ROC curves are shown in Figure 6.

Remark 4.5: EER is computed in a best effort manner,
with only 100 discretized threshold values, to mitigate the stor-
age demands of the 1M uniformly random vectors measuring
AR. Unfortunately, there are some instances whereby the FRR
and FPR do not match exactly, as the threshold step induces
a large change in both FRR and FPR. Only 1/16 classifiers
exhibit an FPR-FRR discrepancy greater than 1%.

1) Gait Authentication: Figure 5a shows AR against FPR
of every user in the activity type (gait) dataset. Recall that in
this figure FPR is evaluated at EER. The dotted straight line is
the line where AR equals FPR (or ERR). We note that there is
a significant proportion of users for which AR is greater than
FPR, even when the latter is reasonably low. For instance, in
some cases AR is close to 1.0 when the FPR is around 0.2.
Thus, a random input attack on systems trained for these target
users will be successful at a rate significantly higher than what
is suggested by FPR. We also note that the two SVM classifiers
have higher instances of users for whom AR surpasses FPR.
Figure 6a shows the AR curve averaged across all users against
the FPR and FRR curves for all four classifiers. We can see
that AR is higher than the ERR (represented by the dotted
vertical line) for the two SVM classifiers. For the remaining

two classifiers, AR is lower than EER. However, by looking
at the AR curve for RNDF, we see that the AR curve is
well above the FPR curve when FRR ≤ 0.3. This can be
specially problematic if the threshold is set so as to minimize
false rejection at the expense of false positives. We also note
that the AR curve for DNN closely follows the FPR curve,
which may suggest that the AR is not as problematic for this
classifier. However, by looking at Figure 5a, we see that this is
misleading since for some users the AR is significantly higher
than FPR, making them vulnerable to random input attacks.
Also, note that the AR generally decreases as the threshold is
changed at the expense of FRR. However, except for RNDF,
the AR for the other three classifiers is significantly higher
than zero even for FRR values close to 1.

2) Touch (Swipe) Authentication: The touch authenticator
has the highest EER of all four biometric modalities. Very few
users attained an EER lower than 0.2 as seen in Figure 5b.
This is mainly because we consider the setting where the
classification decision is being made after each input sample.
Previous work has shown EER to improve if the decision is
made on an average vector of a few samples some work [28],
[22], [8]. Nevertheless, since our focus is on AR, we stick
to the per-sample decision setting. Figure 5b shows that more
than half of the users have ARs larger than FPR, and in some
cases where the FPR is fairly low (say 0.2), the AR is higher
than 0.5. Unlike gait authentication where RNDF classifier
had ARs less than FPR for the majority of the users, all four
algorithms for touch authentication display high vulnerability
to the AR based random input attack. When viewing average
results in Figure 6b, we observe the average AR curve to be
very ‘flat’ for both SVM classifiers and DNN. This indicates
that AR for these classifier remains mostly unchanged even
if the threshold is moved closer to the extremes. RNDF once
again is the exception, with the AR curve approaching 0 as
the threshold is increased.

3) Face Authentication: Figure 5c shows that AR is either
lower or comparable to FPR for RBFSVM and DNN. Thus,
the FPR serves as a good measure of AR in these systems.
However, AR for most users is significantly higher than FPR
for LinSVM and RNDF. This is true even though the EER
of these systems is comparable to the other two as seen in
Figure 6c. For LINSVM, we have an average AR of 0.15
compared to an EER of 0.05. For RNDF, the situation is worse
with the AR reaching 0.78 against an EER of 0.03. We also
note that while the AR is equal to FPR for DNN, its value of
0.10 is still worrisome to be resistant to random input attack.
The relatively high FPR for DNN as compared to RBFSVM is
likely due to a limited set of training data available in training
the neural network.

4) Voice Authentication: Figure 5d shows that once again
LinSVM and RNDF have a significant proportion of users with
AR higher than FPR, whereas for both RBFSVM and DNN
the AR of users is comparable to FPR. Looking at the average
ARs in Figure 6d, we see that interestingly RNDF exhibits an
average AR of 0.01 well below the ERR of 0.04. The average
suppresses the fact that there is one user in the system with an
AR close to 1.0 even with an EER of approximately 0.1, and
two other users with an AR of 0.5 and 0.3 for which the EER
is significantly below 0.1. Thus these specific users are more
susceptible to the random input attack. Only LinSVM has an

8

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.16
0.24

FRR - 0.16
FPR - 0.16
 AR - 0.24

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.140.18

FRR - 0.14
FPR - 0.14
 AR - 0.18

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.09
0.03

FRR - 0.09
FPR - 0.09
 AR - 0.03

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.240.20

FRR - 0.24
FPR - 0.19
 AR - 0.20

(a) Gait Average ROC

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.33

0.490.45

FRR - 0.33
FPR - 0.32
 AR - 0.49
RAR - 0.45

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.26

0.410.40

FRR - 0.26
FPR - 0.27
 AR - 0.41
RAR - 0.40

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.210.230.18

FRR - 0.21
FPR - 0.21
 AR - 0.23
RAR - 0.18

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.330.300.32

FRR - 0.33
FPR - 0.32
 AR - 0.30
RAR - 0.32

(b) Touch Average ROC

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.05
0.150.12

FRR - 0.05
FPR - 0.05
 AR - 0.15
RAR - 0.12

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.040.01
0.09

FRR - 0.04
FPR - 0.04
 AR - 0.01
RAR - 0.09

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.03

0.78

0.02

FRR - 0.03
FPR - 0.03
 AR - 0.78
RAR - 0.02

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.090.100.10

FRR - 0.09
FPR - 0.10
 AR - 0.10
RAR - 0.10

(c) Face Average ROC

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.03
0.08

FRR - 0.03
FPR - 0.03
 AR - 0.08

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.020.00

FRR - 0.02
FPR - 0.02
 AR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.040.01

FRR - 0.04
FPR - 0.04
 AR - 0.01

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.120.08

FRR - 0.12
FPR - 0.11
 AR - 0.08

(d) Voice Average ROC

Fig. 6. ROC curve versus the AR and RAR curves for all configurations. The EER is shown as a dotted vertical blue line. The FRR, FPR, AR and RAR
values shown in the legend are evaluated at EER (FPR = FRR). The RAR is only evaluated on the Touch and Face datasets.

9

average AR (0.08) higher than EER (0.03). The average AR
of DNN is lower than EER (0.11), but it is still significantly
high (0.08). For RBFSVM we have an average AR close to 0.

Observations

In almost every configuration, we can observe that the
average AR is either higher than the FPR or at best comparable
to it. Furthermore, for some users the AR is higher than
FPR even though the average over all users may not reflect
this trend. This demonstrates that an attacker with no prior
knowledge of the system can launch an attack against it via
the feature vector API. Moreover, for both the linear and radial
SVM kernels, and some instances of the DNN classifier, we
observe a relatively flat AR curve as the threshold is varied,
unlike the gradual convergence to 1 experienced by the FPR
and FRR curves. These classifiers thus have a substantial
acceptance region that accept samples as positives irrespective
of the threshold. Random Forests is the only classifier where
the AR curve shows significant drop as the threshold is varied.
Random forests sub-divide the training dataset in a process
called bagging, where each sub-division is used to train one
tree within the forest. With different subsets of data, different
training data points will be closer to different empty regions
in feature space, thus producing varied predictions. Because
the prediction confidence of RNDF is computed from the
proportion of trees agreeing with a prediction, the lack of
consensus within the ensemble of trees for the empty space
may be the reason for the non-flat AR curve.

E. Acceptance Rate: Raw Input API

The results from the feature vector API are not necessarily
reflective of the success rate of a random input attack via the
raw input API. One reason for this is that the feature vectors
extracted from raw inputs may or may not span the entire
feature space, and as a consequence the entire acceptance
region. For this reason, we use the term raw acceptance rate
(RAR) to evaluate the probability of successfully finding an
accepting sample via raw random inputs. To evaluate RAR,
we select the touch and face biometric datasets. The raw input
of the touch authenticator is a time-series, whereas for the face
authentication system it is an image.

1) Raw Touch Inputs: We used a continuous auto-
regressive process (CAR) [50] to generate random timeseries.
We opted for CAR due to the extremely high likelihood of
time-series values having a dependence on previous values.
This time-series was then min-max scaled to approximate
sensor bounds. For example the x-position has a maximum
and minimum value of 1980 and 0 respectively, as dictated
by the number of pixels on a smartphone screen. Both the
duration and length of the time-series were randomly sampled
from reasonable bounds: 0.5 to 2.0 seconds and 30 to 200
data-points, respectively. The time-series was subsequently
parsed by the same feature extraction process as a legitimate
time-series, and the outputs scaled on a feature min-max
scale previously fit on real user data. In total we generate
100,000 time-series, which are used to measure RAR over 50
repetitions of the experiment.

The results of our experiments are shown in Figure 6b,
with the curve labeled RAR showing the raw acceptance rate

as the threshold of each of the classifiers is changed. As we
can see, the RAR is large and comparable to AR. This seems
to indicate that the region spanned by random inputs covers
the acceptance region. However, on closer examination, this
happens to be false. The average volume covered by the true
positive region for the touch dataset (cf. Section III) is less
than 1.289 × 10−4 ± 5.462 × 10−4, yet the volume occupied
by the feature vectors extracted from raw inputs is less than
2.609×10−6. This is significantly smaller than the AR for all
four classifiers. We will return to this observation shortly.

2) Raw Face Inputs: We generated 100,000 images of
size 160x160 pixels, with uniformly sampled RGB values.
Feature embeddings were then extracted from the generated
images with the pre-trained Facenet model (cf. Section IV-A3).
This set of 100,000 raw input vectors, was parsed by a min-
max scaler fitted to real user data. We did not align the
noisy images, as there is no facial information within the
image to align. Note that alignment is normally used in face
authentication to detect facial boundaries within an image.
Again, we aggregate results over 50 repetitions to remove any
potential biases.

The results from these raw inputs are shown in Figure 6c.
We note that the RAR curve behaves much more similarly to
the FPR curve, than what was previously observed for raw
touch inputs. Also, in the particular example of RBFSVM,
we obtain an RAR of 0.09 which is significantly higher than
the AR (0.01) at the equal error rate. We again computed the
true positive region and found that the average is 6.562 ×
10−94 ± 6.521× 10−93. However, the volume covered by the
raw inputs (after feature extraction) is only 4.670 × 10−390,
which is negligible compared to the ARs (0.15, 0.01, 0.78 and
0.10 for all four classifiers). Additional analysis shows that
only one other user’s feature space overlapped with the space
of raw inputs, with an overlapped area of 8.317×10−407, many
orders of magnitude smaller than both the positive users and
the raw feature space itself.

Observations

The threat of a random input attack via raw random inputs
is also high, and in some cases greater than the FPR. However,
the region spanned by the feature vectors from these raw inputs
is exponentially small and hence does not span the acceptance
region. Furthermore, the region also does not coincide with any
true positive region. This implies that raw inputs may result in
high raw acceptance rate due to the fact that the training data
does not have representative vectors in the region spanned by
raw inputs. We shall return to this observation when we discuss
mitigation strategies in Section VI.

V. SYNTHETIC DATASET

The analysis in the previous section was limited in the
sense that we could not isolate the reasons behind the dis-
crepancy between AR and FPR. Indeed, we saw that for
some configurations (dataset-classifier pairs), the AR curve
nicely followed the FPR curve, e.g., the face dataset and DNN
(Figure 5c), where as for others this was not the case. In order
to better understand the factors effecting AR, in this section we
attempt to empirically verify the hypothesized factors effecting
the acceptance region outlined in Section III. Namely, high

10

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

LINSVM Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

RBFSVM Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0
Overall FPR
Overall AR
Overall FRR
Isolated FPR
Isolated AR
Isolated FRR

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

RNDF Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

TFDNN Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. A comparison between FPR, AR, four different ML architectures. Trained on synthetic data of 50 features of 50 user, of increasing variance within
features for a singular user, repeated 50 times. Note how the system level AR and FPR remains unchanging, despite the isolated user’s AR increasing substantially.

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

LINSVM Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

RBFSVM Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0
Overall FPR
Overall AR
Overall FRR
Isolated FPR
Isolated AR
Isolated FRR

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

RNDF Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0

-0.15 -0.1
-0.05 0.0 0.05 0.1 0.15

TFDNN Relative Feature Variance

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. A comparison between FPR, AR, four different ML architectures. Trained on synthetic data of 50 features of 50 user, of increasing variance within
features of all other users except a singular user, repeated 50 times. The x-axis denotes the relative SD of the population compared with the isolated user.

feature variance in a target user’s samples is likely to increase
AR, and low feature variance in the user samples in the
negative class is expected to result in high AR. In both these
cases, we expect to achieve a reasonably low EER, but AR
may still be significantly greater than FPR. Moreover, if these
factors are indeed true, we expect to see similar behavior across
all classifiers. To test this we create a synthetic model of a
biometric dataset.

A. Simulating a Biometric Dataset

Let N (µ, σ2), denote the normal distribution with mean
µ and standard deviation σ. We assume each feature to be
normally distributed across all users with slight variations in
mean and standard deviation across all features and users.
More specifically, our methodology for generating the syn-
thetic dataset is as follows.

1) We model the mean of all n features taking values in the
unit interval I as a normally distributed random variable
N (µmn, σ

2
mn) = N (0.5, 0.12). Similarly we model the

standard deviation of all n features as another normally
distributed random variable N (µvar, σ

2
var) = N (0.1, 0.072).

2) For each feature i ∈ [n], we first sample µi ← N (µmn, σ
2
mn)

and σi ← N (µvar, σ
2
var). The resulting normal distribution

N (µi, σ
2
i) serves as the population distribution of the mean

of the feature i.
3) For each user u, we sample the mean µu,i ← N (µi, σ

2
i).

The variance σ2
u,i is chosen as the control variable. User

u’s samples for the ith feature are generated as i.i.d.
random variables N (µu,i, σ

2
u,i), which serves as user u’s

distribution for the ith feature.

We evaluate the same four types of ML architectures,
LinSVM, RBFSVM, RNDF and DNN. Due to the large
number of potential configurations we evaluate the model
performance at a fixed threshold of 0.5. For the experiments
we choose 50 (synthetic) users, with 50 features in the feature
space. Each experimental run is repeated 50 times to reduce
any potential biases arising from the random process.

B. Effects of Feature Variance on Acceptance Region

1) Variable Isolated User Variance and Fixed Population
Variance: We first treat one out of the 50 users as an outlier,
whcih we call the isolated user. The variance σ2

u,i is fixed at
(0.2)2 for all other users u and for all features i ∈ [n]. We
vary the variance σutgt,i of the isolated user utgt from 0.05 to
0.35 in increments of 0.05. Figure 7 plots the user’s standard
deviation (σutgt,i) relative to the fixed population standard
deviation (σu,i) of 0.2. It is clear the overall AR, FRR and
FPR of the users is not affected by changing feature variance
of a single user, despite the isolated user’s samples included
as part of training and testing data of other users. Conversely,
when viewing the AR, FRR and FPR of the isolated user,
we observe a slight increase in FRR and FPR as the relative
variance increases. This is due to the positive samples being
spread out due to increased variance in the isolated user’s
samples. However, this is accompanied by a substantially large
increase in the acceptance region of this user, approaching 1,
i.e., the entire feature space. Furthermore, this trend is visible
for all four classifiers.

2) Fixed Isolated User Variance and Variable Population
Variance: In this experiment, we fix the variance σ2

utgt,i

of the isolated user (utgt) at (0.2)2. The σ2
u,i of the re-

maining population is sampled from a normal distribution
σu,i ← N (µi, σ

2
i). Where µi and σi is sampled from the

following distributions N (µmn, σ
2
mn) = N (µmn, 0.05

2) and
N (µvar, σ

2
var) = N (0.03, 0.022), respectively. µmn is varied

between 0.05 and 0.35 in increments on 0.05 This sampling
permits a small amount of variation between features.

The results are shown in Figure 8. Inspecting the average
AR, FRR and FPR of the system, it is evident there is a contin-
ual increase of all 3 metrics as the relative variance increases.
This increase is expected as the majority of users’ feature
values have high variance, presenting an increasingly difficult
problem for the machine learner to reduce misclassification
errors. However, in all four classifiers the average AR curve is
either comparable or lower than the FPR curve as the relative

11

0.0 0.2 0.4 0.6 0.8 1.0
Linear SVM threshold

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

0.00
0.08

FRR - 0.00
FPR - 0.00
 AR - 0.08

0.0 0.2 0.4 0.6 0.8 1.0
Radial SVM threshold

0.000.05

FRR - 0.00
FPR - 0.00
 AR - 0.05

0.0 0.2 0.4 0.6 0.8 1.0
Random Forests threshold

0.000.01

FRR - 0.00
FPR - 0.00
 AR - 0.01

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity threshold

0.11
0.00

FRR - 0.11
FPR - 0.11
 AR - 0.00

Fig. 9. ROC Curves versus the AR curve for different ML architectures, including a cosine similarity distance-based classifier. Trained on synthetic data of 50
features of 50 user, with fixed mean and variance for features of all users, repeated 50 times.

25 50 75 100 125 150
LINSVM Number of Users

0.000

0.025

0.050

0.075

0.100

0.125

Er
ro

r

25 50 75 100 125 150
RBFSVM Number of Users

0.000

0.025

0.050

0.075

0.100

0.125

25 50 75 100 125 150
RNDF Number of Users

0.000

0.025

0.050

0.075

0.100

0.125 Metric
FPR
AR
FRR

25 50 75 100 125 150
TFDNN Number of Users

0.000

0.025

0.050

0.075

0.100

0.125

Fig. 10. A comparison between FPR and AR of four different ML architectures. Trained on synthetic data of 50 features per user, with a variable number of
users, repeated 50 times.

variance increases. For the isolated user, we see that when the
relative variance of all other users is lower than this user (to the
left), the AR is significantly higher even though the FPR and
FRR are minimal in all four classifiers. This shows that less
variance in the population samples will result in a high AR,
as the classifier need not tighten AR around the true positive
region, due to lack of high variance negative samples. On the
other hand, AR of the isolated user decreases as the relative
variance of the population increases.

C. On Distance Based Classifiers

As noted earlier, it has been stated that random in-
puts are ineffective against distance-based classification al-
gorithms [17]. This is in contrast to the machine learning
based algorithms evaluated in this paper. We take a brief
interlude to experimentally evaluate this claim on the cosine
similarity distance-based classifier. We sample 50 features
with means distributed as N (µmn, σ

2
mn) = N (0.2, 0.052) and

variance distributed as N (µvar, σ
2
var) = N (0.03, 0.022). Cosine

similarity is computed between two vectors of the same
length. As our positive training data contains more than one
training sample, we use the average of these samples as the
representative template of the user [29]. We use a fixed number
of 50 users, with the experiment repeated 50 times. Recall
that our evaluation at each threshold is best-effort; we use
1,000 threshold bins for the evaluation of the cosine similarity
classifier, since the FRR and FPR rapidly change over a small
range of thresholds.

Figure 9 displays three classical machine learning al-
gorithms of linear SVM, radial SVM, and random forests,
alongside a distance-based cosine similarity classifier. It is
clear from the figure, that the AR is near zero for cosine
similarity, unlike the other classifiers using the same synthetic
dataset. This, however, comes at the cost of higher EER.
This suggests that distance-based classifiers are effective in

minimizing the AR of model, but at the expense of accuracy
of the system. We leave further investigation of distance-based
classifiers as future work.

D. Effects of Increasing Synthetic Users

The real-world datasets used in Section IV have a variable
number of users. Our binary classification task aggregates
negative user samples into a negative class, resulting in dis-
tributions and variances of the negative class which depend
on the number of users in the datasets. Thus, in this test we
investigate the impact on TPR, FPR and AR by varying the
number of users in the dataset. We use the synthetic dataset
configured in the same manner as in Section V-C. We increase
the number of users within the synthetic dataset, from 25 to
150, in increments of 25. Note that the split between positive
and negative samples is still balanced (see Remark 4.3).

In Figure 10, we observe that with the addition of more
users, there is a slight increase in the FPR. This is expected as
the likelihood of user features being similar between any two
users will increase with more users in the population. As the
training of the classifier uses samples from other users as a
negative class, the increased number of negative users slightly
lowers the AR of the classifier, with an increased variation of
the negative training set (from additional users) covering more
of the feature space. However, both these changes are relatively
minor despite the multi-fold increase in the number of users.
Thus, the AR of the classifiers remains relatively stable with
an increasing number of users.

VI. MITIGATION

In the previous section, we validated that higher variance in
the samples in the negative class as compared to the variance
of samples from the target user class reduces AR. The data
from the negative class is obtained from real user samples,
and therefore scheme designers cannot control the variance.

12

TABLE I. EQUAL ERROR RATE AND AR WITH AND WITHOUT THE MITIGATION STRATEGY. GREEN (RESP., RED) SHADES HIGHLIGHT IMPROVEMENT
(RESP., DETERIORATION) IN FPR AND AR. COLOR INTENSITY IS PROPORTIONAL TO DEGREE OF PERFORMANCE CHANGE.

Linear SVM Radial Svm Random Forest Deep Neural Network
Biometric Normal Mitigation Normal Mitigation Normal Mitigation Normal Mitigation
Modality FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR
Gait 0.160 0.24 0.160 0.04 0.140 0.18 0.140 0.04 0.09 0.03 0.09 0.00 0.215 0.20 0.170 0.00
Touch 0.325 0.49 0.340 0.01 0.265 0.41 0.265 0.03 0.21 0.23 0.21 0.00 0.325 0.30 0.375 0.00
Face 0.050 0.15 0.065 0.11 0.040 0.01 0.040 0.01 0.03 0.78 0.03 0.00 0.095 0.10 0.065 0.04
Voice 0.030 0.08 0.030 0.06 0.020 0.00 0.020 0.00 0.04 0.01 0.04 0.00 0.115 0.08 0.090 0.02

TABLE II. EQUAL ERROR RATE AND RAR WITH AND WITHOUT THE MITIGATION STRATEGY. THE AR VALUES REMAIN THE SAME AS IN TABLE I.
β-RAR INDICATES RAR TREATED WITH ONLY β NOISE. RAR INDICATES THE INCLUSION OF BOTH β NOISE AND RAW RANDOM INPUT SAMPLES.

Linear SVM Radial Svm Random Forest Deep Neural Network
Biometric Normal Mitigation Normal Mitigation Normal Mitigation Normal Mitigation
Modality FPR RAR FPR β-RAR RAR FPR RAR FPR β-RAR RAR FPR RAR FPR β-RAR RAR FPR RAR FPR β-RAR RAR
Touch Raw 0.325 0.45 0.345 0.44 0.00 0.265 0.40 0.265 0.36 0.01 0.21 0.18 0.215 0.05 0.00 0.325 0.32 0.38 0.26 0.00
Face Raw 0.050 0.12 0.075 0.14 0.00 0.040 0.09 0.040 0.09 0.00 0.03 0.02 0.030 0.01 0.00 0.095 0.10 0.07 0.06 0.03

However, this gives us a simple idea to minimize AR: generate
noise vectors around the target user’s vectors and treat it as part
of the negative class for training the model. This will result in
the tightening of the acceptance region around the true positive
region. We remark that the noise generated is independent of
the negative training samples.

A. The Beta Distribution

More specifically, we generate additional negative training
samples by sampling noisy vectors where each feature value is
sampled from a beta distribution. We generate samples equal
to the number of samples in the positive class. Thus creating a
dataset with a third of the samples as positive, another third as
negative samples from other users, and finally the remaining
third of feature vectors treated as negative samples from the
beta distribution dependent on the positive user. The procedure
is as follows. For the ith feature, let µi denote the mean value
for the given target user. We use the beta distribution with
parameters αi = |0.5 − µi| + 0.5 and βi = 0.5. We denote
the resulting beta distribution by Be(αi, βi). Then a noisy
sample x is constructed by sampling its ith element xi from
the distribution Be(αi, βi) if µi ≤ 0.5, and from 1−Be(αi, βi)
otherwise. The two cases ensure that we add symmetric noise
as the mean moves over to either side of 0.5.

Results on AR. In Table I, we show the resulting FPR
and AR after the addition of beta noise at the equal error
rate. The detailed ROC curves are shown in Figure 13 in
Appendix A. In every configuration (classifier-dataset pairs),
we see a significant decrease in AR. The AR is now lower than
FPR in every configuration. In 14 out of 16 cases, the AR is
≤ 0.04. The two exceptions are LinSVM (with face and voice
datasets). We further see that in 13 out of 16 instances the
FPR either remains unchanged or improves! The 3 instances
where the FPR degrades are LinSVM with face and face
datasets both by +0.015, and DNN with Touch where the
difference is +0.05. Thus, adding beta distributed noise does
indeed decrease the AR with minimal impact on FPR. This
agrees with our postulate that high AR was likely due to loose
decision boundaries drawn by the classifier, and the addition of
beta noise tightens this around the true positive region. Figure
12 in Appendix A displays individual user FPRs and ARs.

Results on RAR. Interestingly, beta distributed noise only
marginally reduces the raw acceptance rate as can be seen
in Table II (columns labeled β-RAR). The reason for this lies
in the volume of the region spanned by random raw inputs. We

previously saw in Section IV-E that it was (a) exponentially
small and (b) many orders of magnitude smaller than the true
positive region. Thus, it is unlikely that beta distributed noise
will lie in this region to aid the model to label them as negative
samples. Consequently we sought another means to mitigate
this attack surface.

B. Feature Vectors from Raw Inputs as Negative Samples

Our mitigation strategy to reduce RAR is to include a
subset of raw input vectors in the training process, whose
cardinality is equal to the number of positive user samples
in the training dataset. The training dataset now contains 1/4th
each of raw input vectors, beta-noise, positive samples, and
samples from other users.

Results on AR and RAR. Table II shows that the mitigation
strategy reduces the RAR to less than or equal to 0.03 in
all instances (columns labeled RAR). The resulting FPR is
marginally higher than the FPR from only beta-distributed
noise in some cases (Table I). Thus, the inclusion of beta-
distributed noise in conjunction with subset of raw inputs in
the training data reduces both AR and RAR with minimal
impact on FPR and FRR.

VII. DISCUSSION

• Our work proposes an additional criterion to assess the
security of biometric systems, namely their resilience to
random inputs. The work has implications for biometric
template protection [51], where a target template resides
on a remote server and the attacker’s goal is to steal
the template. In such a setting, obtaining an accepting
sample may be enough for an attacker, as it serves as an
approximation to the biometric template. Our work shows
that the attacker might be able to find an approximation to
the template via random input attacks if the system AR is
not tested. Conversely, once the AR is reduced below FPR
(e.g., via adding beta distributed noise), then one can safely
use FPR as the baseline probability of success of finding
an approximation.
• We have assumed that the input to the classifier, in partic-

ular the length of the input is publicly known. In practice,
this may not be the case. For instance, in face recognition,
a captured image would be of a set size unknown to the
attacker. Likewise, the number of features in the (latent)
feature space may also be unknown. However, we do not
consider this as a serious limitation, as the input length is
rarely considered sensitive so as to be kept secret. In any

13

case, the security of the system should not be reliant on
keeping this information secret following Kerckhoffs’s well
known principle.

• We note that there are various detection mechanisms that
protect the front-end of biometric systems. For example,
spoofing detection [52] is an active area in detecting
speaker style transfer [53]. Detection of replay attacks is
also leveraged to ensure the raw captured biometric is
not reused, for example audio recordings [54]. There is
also liveliness detection, which seeks to determine if the
biometric that is presented is characteristic of a real person
and not a recreation, e.g., face masks remain relatively
static and unmoving compared to a real face [55]. Our at-
tack surface applies once the front-end has been bypassed.
Our mitigation measures can thus be used in conjunction
with these detection mechanisms to thwart random input
attacks. Being generic, our mitigation measures also work
for systems which do not have defense measures similar to
liveness detection.

• Once an accepting sample via the feature vector API
has been found, it may be possible to obtain an input
that results in this sample (after feature extraction), as
demonstrated by Garcia et al. with the training of an auto-
encoder for both feature extraction and the regeneration of
the input image [23].

• In this work, we have focused on authentication as a binary
classification problem, largely because of its widespread
use in biometric authentication [8], [9], [10], [11], [12],
[13], [14], [15], [16], [26]. However, authentication has also
been framed as a one-class classification problem [56], [26]
or as multi-class classification [26], e.g., in a discrimination
model, as noted earlier. In one-class classification, only
samples from the target user are used to create the template,
and the goal is to detect outliers. If this is achieved in a
manner similar to distance-based classifiers, then as we
have seen in Section V-C, and as previously indicated
in [17], the AR is expected to be small. In the multi-class
setting, each of the n users is treated as a different class.
This increase in classes is expected to proportionally lower
the AR. However, whether this behavior is observed on real
world data requires additional experimentation. We remark
that as observed in Section V-B, AR is highly dependent on
the relative variance of the positive user and the negative
user features. This may lead to the possibility of larger AR
for some of the users, consequently leading to higher risk
of attack for these users. We leave thorough investigation
of the one-class and multi-class settings as future work.

VIII. RELATED WORK

There are several mentions of attacks similar to the random
input attack discussed in this paper. Pagnin et al. [17] define
a blind brute-force attack on biometric systems where the at-
tacker submits random inputs to find an accepting sample. The
inputs are n-element vectors whose elements are integers in the
set {0, 1, . . . , q−1}. The authors conclude that the probability
of success of this attack is exponential in n, assuming that
the authentication is done via a distance function (discarding
any vector outside the ball of radius determined by the system
threshold). They concluded that blind brute force attack is not
effective in recovering an accepting sample. While this may
apply to distance-based matching, the same conclusion cannot

be made about machine learning based algorithms whose
decision functions are more involved. Indeed, we have shown
that the acceptance region for machine learning classifiers is
not exponentially small. It has also been argued that the success
rate of random input attacks can be determined by the false
positive rate (FPR), at least in the case of fingerprint and face
authentication [18], [19]. We have shown that for sophisticated
machine learning classifiers this conclusion is not true, and
random input attacks in many instances success at a rate higher
than FPR. A more involved method is hill-climbing [57], [18]
which seeks an accepting sample via exploiting the confidence
scores returned by the matching algorithm. The authentication
systems considered in this paper do not return confidence
scores.

Serwadda and Phoha [58] use a robotic finger and popu-
lation statistics of touch behavior on smartphones to launch
a physical attack on touch-based biometric authentication
systems. Their attack reduces the accuracy of the system by
increasing the EER. In contrast, our work does not assume any
knowledge of population biometric statistics, e.g., population
distribution of feature space. It is an interesting area of work
to investigate whether a robotic finger can be programmed to
generate raw inputs used in our attack.

Garcia et al. [23] use explainable-AI techniques [48] to
construct queries (feature vectors) to find an accepting sample
in machine learning based biometric authentication systems.
On a system with 0 FPR, they show that their attack is
successful in breaching the system with up to 93% success
rate. However, their attack is more involved: it requires the
construction of a seed dataset containing representative ac-
cepting and rejecting samples of a user set chosen by the
adversary. This dataset trains a neural network as a substitute
to the classifier of the authentication system. The adversary
then uses explainable AI techniques to obtain an accepting
sample of a target user (not in the seed dataset) in as few
queries as possible, by updating the substitute network. The
authors also report a random feature vector attack, however, the
attack is only successful on one out of 16 victims. The random
feature vector is constructed by sampling each feature value
via a normal distribution (distribution parameters not stated),
unlike the uniform distribution in our case. We also note that
they propose including images with randomly perturbed pixels
as a counter-measure to defend against the aforementioned
random input attack. This is different from our proposed beta-
distributed noise mitigation technique, as it is agnostic to the
underlying biometric modality.

The frog-boiling attack [59], [60] studies the impact of
gradual variations in training data samples to manipulate the
classifier decision boundary. In this work we do not consider
the adversary with access to the training process, nor do we
evaluate models with an iterative update process. If this threat
model is considered for the problem addressed in this paper,
then an adversary may seek to maximize the acceptance region
of a model by gradually poisoning the training dataset. As we
have demonstrated in Section V, the relative variance between
the user’s data and population dataset directly impacts AR.
Thus the manipulation of a user’s training samples to be more
varied would be effective in increasing the AR. Likewise, in
our mitigation technique, we have shown that beta-distributed
noise is effective in the minimization of AR. However an

14

adversary might poison the training data by labeling beta
noise as positive samples resulting in a maximization of the
acceptance region to near 100% of the feature space.

Our work is different from another line of work that
targets machine learning models in general. For instance, the
work in [61] shows an evasion attack where the adversary,
through only blackbox access to a neural network, forces the
classifier to misclassify an input by slightly perturbing the
input even though the perturbed sample is perceptually similar
to the original sample, e.g., noisy images. The attack can be
applicable to the authentication setting as well. However, it
relies on the confidence values (probability vectors) returned
by the classifier, which is not the case in authentication.
Similarly, the work in [62] shows how to steal a machine
learning model, i.e., retrieve its undisclosed parameters, which
only returns class labels (accept/reject decision in the case of
authentication). They describe several techniques including the
Lowd and Meek attack [63] to retrieve a model sufficiently
similar to the target model. The machine learning models
considered in their attack are for applications different from
authentication where one expects to find an accepting sample
with negligible probability.

There are also proposals to defend against the above men-
tioned evasion attacks. The goal is to make the classifiers ro-
bust against adversarial inputs in the sense that classification is
constant within a ball of certain radius around each input [64],
[65]. Madry et al. [64] propose a theoretical framework which
formalizes defense against adversarial attacks by including
adversarially perturbed samples in the loss function of DNNs.
They show that it is possible to train DNNs robust against a
wide range of adversarial input attacks. Cao and Gong [66]
propose another defense where given a test input, random
points within a hypercube surrounding the input are sampled,
and the majority label returned by the already trained DNN is
assigned to the test input. Randomized smoothing [65] creates
a separate classifier from any classifier such that its prediction
within a Gaussian noise region (ball) around any input is
constant, and consequently less likely to produce an erroneous
prediction. We note that in evasion attacks there is a notion of
nearness, i.e., the adversary is given an input and seeks to add
a small amount of noise such that the resultant erroneously
labelled input is close to the original input. In contrast, in our
case the random input need not be close to the target user’s
samples or even follow the same distribution. Furthermore,
we have shown that even a conservative estimate of the true
positive region is negligible in comparison to the entirety of
the feature space (Section III-B). Thus, it is unclear whether
such defenses apply to uniform random inputs, as opposed to
random perturbations of inputs.

Membership inference attacks [24], [25] attempt to de-
termine if a record obtained by an adversary was part of
the original training data of the model. Whilst this attack
does not compromise the security of the model, it breaches
the privacy of the individual records. These attacks create
a shadow model [24] to mimic the behavior of the target
model. Salem et al. [25] construct a shadow model using
only positive class samples and negative noise generated via
uniformly random feature vectors. However it is hypothesized
that these random samples belong to non-members, i.e., the
negative class [25, §V.B]. We have shown that a large portion

of these random inputs may also belong to the positive class.

Finally, we point to other works in literature analyzing
the security of biometric authentication systems. Sugrim et
al. [45] survey and evaluate a range of performance met-
rics used in biometric authentication schemes. They seek
to motivate scheme designers to leverage robust metrics to
provide a complete description of the system, including a
proposal of the new metric: Frequency Count Score (FCS). The
FCS metric shows a distribution of scores of legitimate and
unauthorized users, identifying the overlap between the two
distributions which helps to select the appropriate threshold
for the classification decision. The FCS, however, is dependent
on the negative class or samples of other users, which does
not include random inputs. The work in [67] investigates
the accuracy of authentication systems reported on a small
number of participants when evaluated over an increasing
number of users. The authors suggest that performance limits
of a system with a small number of participants should be
evaluated iteratively by increasing the participant count until
a the performance degrades below a tolerable limit.

IX. CONCLUSION

It is important to assess the security of biometric au-
thentication systems against random input attacks akin to
the security of passwords against random guess attacks. We
have demonstrated that without intentionally including random
inputs as part of the training process of the underlying machine
learning algorithm, the authentication system is likely to be
susceptible to random input attacks at a rate higher than
indicated by EER. Absent any other detection mechanism, e.g.,
liveliness detection, this renders the system vulnerable. The
mitigation measures proposed in this paper can be adopted to
defend against such attacks.

X. ACKNOWLEDGMENTS

This research was funded by the Optus Macquarie Uni-
versity Cybersecurity Hub, Data61 CSIRO and an Australian
Government Research Training Program (RTP) Scholarship.
We would like to thank the anonymous reviewers and our
shepherd Kevin Butler for their feedback to improve the paper.

REFERENCES

[1] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
fingerprint recognition. Springer Science & Business Media, 2009.

[2] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015.

[4] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale
speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

[5] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker
recognition,” arXiv preprint arXiv:1806.05622, 2018.

[6] U. Mahbub, S. Sarkar, V. M. Patel, and R. Chellappa, “Active user
authentication for smartphones: A challenge data set and benchmark
results,” in Biometrics Theory, Applications and Systems (BTAS), 2016
IEEE 8th International Conference on. IEEE, 2016, pp. 1–8.

[7] W. Xu, G. Lan, Q. Lin, S. Khalifa, N. Bergmann, M. Hassan, and W. Hu,
“Keh-gait: Towards a mobile healthcare user authentication system by
kinetic energy harvesting.” in NDSS, 2017.

15

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.36

0.010.00

FRR - 0.36
FPR - 0.33
 AR - 0.01
RAR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.27

0.030.01

FRR - 0.27
FPR - 0.26
 AR - 0.03
RAR - 0.01

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.21

0.000.00

FRR - 0.21
FPR - 0.22
 AR - 0.00
RAR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.38

0.020.00

FRR - 0.38
FPR - 0.38
 AR - 0.02
RAR - 0.00

(a) Touch Average ROC in the presence of Beta Noise

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.080.11
0.00

FRR - 0.08
FPR - 0.07
 AR - 0.11
RAR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.040.010.00

FRR - 0.04
FPR - 0.04
 AR - 0.01
RAR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.030.000.00

FRR - 0.03
FPR - 0.03
 AR - 0.00
RAR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.060.050.03

FRR - 0.06
FPR - 0.07
 AR - 0.05
RAR - 0.03

(b) Face Average ROC in the presence of Beta Noise
Fig. 11. Beta-noise mitigation of AR, with additional negative samples from the RAR feature set. The EER is marked on the diagrams as a vertical line.
Addition RAR vectors were included as it was previously observed that beta noise is sufficient in mitigating AR attacks, but not the RAR attack.

[8] J. Chauhan, B. Z. H. Zhao, H. J. Asghar, J. Chan, and M. A. Kaafar,
“Behaviocog: An observation resistant authentication scheme,” in In-
ternational Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 39–58.

[9] M. T. Curran, N. Merrill, J. Chuang, and S. Gandhi, “One-step, three-
factor authentication in a single earpiece,” in Proceedings of the 2017
ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2017 ACM International Symposium
on Wearable Computers. ACM, 2017, pp. 21–24.

[10] C. Huang, H. Chen, L. Yang, and Q. Zhang, “Breathlive: Liveness detec-
tion for heart sound authentication with deep breathing,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 2, no. 1, p. 12, 2018.

[11] R. Liu, C. Cornelius, R. Rawassizadeh, R. Peterson, and D. Kotz, “Vocal
resonance: Using internal body voice for wearable authentication,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 2, no. 1, p. 19, 2018.

[12] Y. Chen, J. Sun, X. Jin, T. Li, R. Zhang, and Y. Zhang, “Your face your
heart: Secure mobile face authentication with photoplethysmograms,”
in IEEE INFOCOM 2017-IEEE Conference on Computer Communica-
tions. IEEE, 2017, pp. 1–9.

[13] C. Song, A. Wang, K. Ren, and W. Xu, “Eyeveri: A secure and usable
approach for smartphone user authentication,” in IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[14] J. Chauhan, Y. Hu, S. Seneviratne, A. Misra, A. Seneviratne, and
Y. Lee, “Breathprint: Breathing acoustics-based user authentication,”
in Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2017, pp. 278–291.

[15] J. Ho and D.-K. Kang, “Mini-batch bagging and attribute ranking for
accurate user authentication in keystroke dynamics,” Pattern Recogni-
tion, vol. 70, pp. 139–151, 2017.

[16] H. Crawford and E. Ahmadzadeh, “Authentication on the go: assessing
the effect of movement on mobile device keystroke dynamics,” in
Thirteenth Symposium on Usable Privacy and Security ({SOUPS}
2017), 2017, pp. 163–173.

[17] E. Pagnin, C. Dimitrakakis, A. Abidin, and A. Mitrokotsa, “On the
leakage of information in biometric authentication,” in International
Conference in Cryptology in India. Springer, 2014, pp. 265–280.

[18] M. Martinez-Diaz, J. Fierrez-Aguilar, F. Alonso-Fernandez, J. Ortega-
Garcı́a, and J. Siguenza, “Hill-climbing and brute-force attacks on bio-
metric systems: A case study in match-on-card fingerprint verification,”

in Proceedings 40th Annual 2006 International Carnahan Conference
on Security Technology. IEEE, 2006, pp. 151–159.

[19] J. Galbally, C. McCool, J. Fierrez, S. Marcel, and J. Ortega-Garcia, “On
the vulnerability of face verification systems to hill-climbing attacks,”
Pattern Recognition, vol. 43, no. 3, pp. 1027–1038, 2010.

[20] A. Blum, J. Hopcroft, and R. Kannan, “Foundations of data science,”
Vorabversion eines Lehrbuchs, 2016.

[21] D. Gafurov, K. Helkala, and T. Søndrol, “Biometric gait authentication
using accelerometer sensor.” JCP, vol. 1, no. 7, pp. 51–59, 2006.

[22] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE transactions on information forensics
and security, vol. 8, no. 1, pp. 136–148, 2012.

[23] W. Garcia, J. I. Choi, S. K. Adari, S. Jha, and K. R. Butler, “Explainable
black-box attacks against model-based authentication,” arXiv preprint
arXiv:1810.00024, 2018.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[25] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “Ml-leaks:
Model and data independent membership inference attacks and defenses
on machine learning models,” arXiv preprint arXiv:1806.01246, 2018.

[26] H. Xu, Y. Zhou, and M. R. Lyu, “Towards continuous and pas-
sive authentication via touch biometrics: An experimental study on
smartphones,” in 10th Symposium On Usable Privacy and Security
({SOUPS} 2014), 2014, pp. 187–198.

[27] C.-C. Han, H.-L. Cheng, C.-L. Lin, and K.-C. Fan, “Personal authen-
tication using palm-print features,” Pattern recognition, vol. 36, no. 2,
pp. 371–381, 2003.

[28] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for
smartphones.” in NDSS, vol. 56, 2013, pp. 57–59.

[29] J. Chauhan, H. J. Asghar, A. Mahanti, and M. A. Kaafar, “Gesture-
based continuous authentication for wearable devices: The smart glasses
use case,” in International Conference on Applied Cryptography and
Network Security. Springer, 2016, pp. 648–665.

[30] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through
motion sensors: Attacks and defenses,” in NDSS, 2016.

[31] “Android developers - monkeyrunner,” https://developer.android.com/
studio/test/monkeyrunner, accessed: 2019-10-13.

[32] O. Shwartz, A. Cohen, A. Shabtai, and Y. Oren, “Shattered trust:

16

https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner

When replacement smartphone components attack,” in 11th {USENIX}
Workshop on Offensive Technologies ({WOOT} 17), 2017.

[33] C. Son, W. Chang, K. Deoksang, D.-K. Shin, B. Yoo, H. SeungJu,
H. JaeJoon, S. Jinwoo, and C. K. Choi, “Face verification method and
apparatus,” Oct. 4 2018, uS Patent App. 15/833,292.

[34] “Clarifai - face embedding model,” https://www.clarifai.
com/models/face-embedding-image-recognition-model-
d02b4508df58432fbb84e800597b8959, accessed: 2019-10-13.

[35] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[36] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory
of brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech.
Rep., 1961.

[37] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous
user authentication on mobile devices: Recent progress and remaining
challenges,” IEEE Signal Processing Magazine, vol. 33, no. 4, pp. 49–
61, 2016.

[38] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz,
“A public domain dataset for human activity recognition using smart-
phones,” in Proceedings of the 21th International European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2013, pp. 437–442.

[39] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A
dataset for recognising faces across pose and age,” in 2018 13th IEEE
International Conference on Automatic Face & Gesture Recognition
(FG 2018). IEEE, 2018, pp. 67–74.

[40] G. B. H. E. Learned-Miller, “Labeled faces in the wild: Updates and
new reporting procedures,” University of Massachusetts, Amherst, Tech.
Rep. UM-CS-2014-003, May 2014.

[41] “Github - facenet source repository,” https://github.com/davidsandberg/
facenet, accessed: 2019-10-13.

[42] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a” siamese” time delay neural network,” in Advances
in neural information processing systems, 1994, pp. 737–744.

[43] A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto,
“Classification regions of deep neural networks,” arXiv preprint
arXiv:1705.09552, 2017.

[44] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, “Evaluating
behavioral biometrics for continuous authentication: Challenges and
metrics,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 386–399.

[45] S. Sugrim, C. Liu, M. McLean, and J. Lindqvist, “Robust performance
metrics for authentication systems,” in Network and Distributed Systems
Security (NDSS) Symposium, 2019.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[47] “Github - timesynth source repository,” https://www.tensorflow.org/
guide/estimators, accessed: 2019-10-13.

[48] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining. ACM, 2016, pp. 1135–1144.

[49] S. Sprager and M. Juric, “Inertial sensor-based gait recognition: A
review,” Sensors, vol. 15, no. 9, pp. 22 089–22 127, 2015.

[50] “Tensorflow - estimators,” https://github.com/TimeSynth/TimeSynth,
accessed: 2019-10-13.

[51] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template secu-
rity,” EURASIP Journal on advances in signal processing, vol. 2008,
p. 113, 2008.

[52] S. Marcel, M. S. Nixon, and S. Z. Li, Handbook of biometric anti-
spoofing. Springer, 2014, vol. 1.

[53] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-
to-end speech synthesis,” arXiv preprint arXiv:1703.10135, 2017.

[54] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans,
J. Yamagishi, and K. A. Lee, “The asvspoof 2017 challenge: Assessing

the limits of replay spoofing attack detection,” ISCA (the International
Speech Communication Association), 2017.

[55] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single
image with sparse low rank bilinear discriminative model,” in European
Conference on Computer Vision. Springer, 2010, pp. 504–517.

[56] M. Bicego, E. Grosso, and M. Tistarelli, “Face authentication using one-
class support vector machines,” in International Workshop on Biometric
Person Authentication. Springer, 2005, pp. 15–22.

[57] C. Soutar, “Biometric system performance and security,” IEEE Auto.
Identification Advanced Technol., 1999.

[58] A. Serwadda and V. V. Phoha, “When kids’ toys breach mobile phone
security,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 599–610.

[59] E. Chan-Tin, V. Heorhiadi, N. Hopper, and Y. Kim, “The frog-boiling
attack: Limitations of secure network coordinate systems,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 14, no. 3,
p. 27, 2011.

[60] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
workshop on Security and artificial intelligence. ACM, 2011.

[61] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security. ACM, 2017, pp. 506–519.

[62] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[63] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 641–647.

[64] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[65] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial ro-
bustness via randomized smoothing,” arXiv preprint arXiv:1902.02918,
2019.

[66] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural
networks via region-based classification,” in Proceedings of the 33rd
Annual Computer Security Applications Conference. ACM, 2017, pp.
278–287.

[67] S. Sugrim, C. Liu, and J. Lindqvist, “Recruit until it fails: Exploring
performance limits for identification systems,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3,
no. 3, p. 104, 2019.

APPENDIX A
MITIGATION ROC PLOTS

This appendix contains plots of the results as discussed
in Section VI. Figure 12 contains per-user scatter plots of
AR and FPR for all biometric modalities and algorithms. For
the same classifiers, Figure 13 illustrates the ROC curves
for classifiers trained with the inclusion of beta distributed
noise only. Finally, Figure 11 displays the ROC curves for
all classifiers of touch and face datasets with the inclusion
of both beta distributed noise and raw input vectors as an
additional mitigation strategy against the the raw inputs, which
were unfazed by the beta noise. A summary of changes in
FRR, FPR, AR and RAR of both Figure 13 and 11 have been
provided earlier in Table I and II of Section VI.

APPENDIX B
DNN ESTIMATOR CONFIGURATION.

All models were trained for 5000 steps, with batch size of
50, with the Adagrad optimizer. The exact layer configuration
of the DNNEstimator [47] used can be found on our project
page (https://imathatguy.github.io/Acceptance-Region/).

17

https://www.clarifai.com/models/face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959
https://www.clarifai.com/models/face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959
https://www.clarifai.com/models/face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://www.tensorflow.org/guide/estimators
https://www.tensorflow.org/guide/estimators
https://github.com/TimeSynth/TimeSynth
https://imathatguy.github.io/Acceptance-Region/

0.00 0.25 0.50 0.75 1.00
EER

0.00

0.25

0.50

0.75

1.00
AR

(a) Gait

0.00 0.25 0.50 0.75 1.00
EER

0.00

0.25

0.50

0.75

1.00

AR

(b) Touch

0.00 0.25 0.50 0.75 1.00
EER

0.00

0.25

0.50

0.75

1.00

AR

(c) Face

0.00 0.25 0.50 0.75 1.00
EER

0.00

0.25

0.50

0.75

1.00

AR

LinSVM
RBFSVM
RNDF
DNN

(d) Voice
Fig. 12. Individual user scatter of AR and FPR after the addition of beta distributed noise. A substantial proportion of users now exhibit an AR close to zero, or
below the AR = FPR. Unfortunately, this defense mechanism did not completely minimize the AR of LINSVM for the Face authenticator. Nor did this defense
protect two outlying users in the RNDF voice authenticator.

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.16
0.04

FRR - 0.16
FPR - 0.16
 AR - 0.04

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.14
0.04

FRR - 0.14
FPR - 0.14
 AR - 0.04

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.09
0.00

FRR - 0.09
FPR - 0.09
 AR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.17

0.00

FRR - 0.17
FPR - 0.17
 AR - 0.00

(a) Gait Average ROC in the presence of Beta Noise

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.31

0.01

0.44

FRR - 0.31
FPR - 0.37
 AR - 0.01
RAR - 0.44

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.26

0.03

0.36

FRR - 0.26
FPR - 0.27
 AR - 0.03
RAR - 0.36

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.21

0.00
0.05

FRR - 0.21
FPR - 0.21
 AR - 0.00
RAR - 0.05

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.38

0.00

0.26

FRR - 0.38
FPR - 0.37
 AR - 0.00
RAR - 0.26

(b) Touch Average ROC in the presence of Beta Noise

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.060.110.14

FRR - 0.06
FPR - 0.07
 AR - 0.11
RAR - 0.14

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.040.01
0.09

FRR - 0.04
FPR - 0.04
 AR - 0.01
RAR - 0.09

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.030.000.01

FRR - 0.03
FPR - 0.03
 AR - 0.00
RAR - 0.01

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.070.040.06

FRR - 0.07
FPR - 0.06
 AR - 0.04
RAR - 0.06

(c) Face Average ROC in the presence of Beta Noise

0.0 0.2 0.4 0.6 0.8 1.0
LINSVM threshold

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0.030.06

FRR - 0.03
FPR - 0.03
 AR - 0.06

0.0 0.2 0.4 0.6 0.8 1.0
RBFSVM threshold

0.020.00

FRR - 0.02
FPR - 0.02
 AR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
RNDF threshold

0.040.00

FRR - 0.04
FPR - 0.04
 AR - 0.00

0.0 0.2 0.4 0.6 0.8 1.0
TFDNN threshold

0.09
0.02

FRR - 0.09
FPR - 0.09
 AR - 0.02

(d) Voice Average ROC in the presence of Beta Noise

Fig. 13. Beta-noise mitigation of AR, with additive negative training noise sampled from a symmetric beta distribution around the mean of the user’s features.
The EER is marked on the diagrams as a vertical line. It is noted the plots with RAR curves the additional Beta-noise is not sufficient in mitigating RAR attacks.

18

	Introduction
	Background and Threat Model
	Biometric Authentication Systems
	Biometric API: The Setting
	Threat Model and Assumptions

	Acceptance Region and Proposed Attack
	Motivation and Attack Overview
	Acceptance Region

	Evaluation on Biometric Systems
	The Biometric Datasets
	Activity Type (Gait) Dataset
	Touch Dataset
	Face Dataset
	Speaker Verification (Utterances)

	Evaluation Methodology
	Machine Learning Classifiers
	Acceptance Region: Feature Vector API
	Gait Authentication
	Touch (Swipe) Authentication
	Face Authentication
	Voice Authentication

	Acceptance Rate: Raw Input API
	Raw Touch Inputs
	Raw Face Inputs

	Synthetic Dataset
	Simulating a Biometric Dataset
	Effects of Feature Variance on Acceptance Region
	Variable Isolated User Variance and Fixed Population Variance
	Fixed Isolated User Variance and Variable Population Variance

	On Distance Based Classifiers
	Effects of Increasing Synthetic Users

	Mitigation
	The Beta Distribution
	Feature Vectors from Raw Inputs as Negative Samples

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References
	Appendix A: Mitigation ROC Plots
	Appendix B: DNN Estimator configuration.

