Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Embedded computing devices are used on a large scale in the emerging internet of things (IoT). However, their wide deployment raises the incentive for attackers to target these devices, as demonstrated by several recent attacks. As IoT devices are built for long service life, means are required to protect sensitive code in the presence of potential vulnerabilities, which might be discovered long after deployment. Tagged memory has been proposed as a mechanism to enforce various fine-grained security policies at runtime. However, none of the existing tagged memory schemes provides efficient and flexible compartmentalization in terms of isolated execution environments.

We present TIMBER-V, a new tagged memory architecture featuring flexible and efficient isolation of code and data on small embedded systems. We overcome several limitations of previous schemes. We augment tag isolation with a memory protection unit to isolate individual processes, while maintaining low memory overhead. TIMBER-V significantly reduces the problem of memory fragmentation, and improves dynamic reuse of untrusted memory across security boundaries. TIMBER-V enables novel sharing of execution stacks across different security domains, in addition to interleaved heaps. TIMBER-V is compatible to existing code, supports real-time constraints and is open source. We show the efficiency of TIMBER-V by evaluating our proof-of-concept implementation on the RISC-V simulator.

View More Papers

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via...

A. Theodore Markettos (University of Cambridge), Colin Rothwell (University of Cambridge), Brett F. Gutstein (Rice University), Allison Pearce (University of Cambridge), Peter G. Neumann (SRI International), Simon W. Moore (University of Cambridge), Robert N. M. Watson (University of Cambridge)

Read More

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More