Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

A common vision for large-scale autonomous vehicle deployment is in a ride-hailing context. While this promises tremendous societal benefits, large-scale deployment can also exacerbate the impact of potential vulnerabilities of autonomous vehicle technologies. One particularly concerning vulnerability demonstrated in recent security research involves GPS spoofing, whereby a malicious party can introduce significant error into the perceived location of the vehicle. However, such attack focus on a single target vehicle. Our goal is to understand the systemic impact of a limited number of carefully placed spoofing devices on the quality of the ride hailing service that employs a large number of autonomous vehicles. We consider two variants of this problem: 1) a static variant, in which the spoofing device locations and their configuration are fixed, and 2) a dynamic variant, where both the spoofing devices and their configuration can change over time. In addition, we consider two possible attack objectives: 1) to maximize overall travel delay, and 2) to minimize the number of successfully completed requests (dropping off passengers at the wrong destinations). First, we show that the problem is NP-hard even in the static case. Next, we present an integer linear programming approach for solving the static variant of the problem, as well as a novel deep reinforcement learning approach for the dynamic variant. Our experiments on a real traffic network demonstrate that the proposed attacks on autonomous fleets are highly successful, and even a few spoofing devices can significantly degrade the efficacy of an autonomous ride-hailing fleet.

View More Papers

No Grammar, No Problem: Towards Fuzzing the Linux Kernel...

Alexander Bulekov (Boston University), Bandan Das (Red Hat), Stefan Hajnoczi (Red Hat), Manuel Egele (Boston University)

Read More

Towards a Unified Cybersecurity Testing Lab for Satellite, Aerospace,...

Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

Read More

Efficient Privacy-Preserved Processing of Multimodal Data for Vehicular Traffic...

Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

Read More

ChargePrint: A Framework for Internet-Scale Discovery and Security Analysis...

Tony Nasr (Concordia University), Sadegh Torabi (George Mason University), Elias Bou-Harb (University of Texas at San Antonio), Claude Fachkha (University of Dubai), Chadi Assi (Concordia University)

Read More