Natasha Alkhatib (Télécom Paris), Lina Achaji (INRIA), Maria Mushtaq (Télécom Paris), Hadi Ghauch (Télécom Paris), Jean-Luc Danger (Télécom Paris)

The adoption of external connectivity on modern vehicles and the increasing integration of complex automotive software paved the way for novel attack scenarios exploiting the vulnerabilities of in-vehicle protocols. The Controller Area Network (CAN) bus, a widely used communication network in vehicles between electronic control units (ECUs), therefore requires urgent monitoring. Predicting sophisticated intrusions that affect interdependencies between several CAN signals transmitted by distinct IDs requires modeling two key dimensions: 1) time dimension, where we model the temporal relationships between signals carried by each ID separately 2) interaction dimension where we model the interaction between IDs, i.e., how the state of each CAN ID affects the others. In this work, we propose a novel deep learning-based multi-agent intrusion detection system, AMICA, that uses an attention-based self-supervised learning technique to detect stealthy in-vehicle intrusions, i.e., those that that not only disturb normal timing or ID distributions but also carried data values by multiple IDs, along with others. The proposed model is evaluated on the benchmark dataset SynCAN. Our source code is available at: https://github.com/linaashaji/AMICA

View More Papers

Evasion Attacks and Defenses on Smart Home Physical Event...

Muslum Ozgur Ozmen (Purdue University), Ruoyu Song (Purdue University), Habiba Farrukh (Purdue University), Z. Berkay Celik (Purdue University)

Read More

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More

“This is different from the Western world”: Understanding Password...

Aniqa Alam, Elizabeth Stobert, Robert Biddle (Carleton University)

Read More

Preventing SIM Box Fraud Using Device Model Fingerprinting

BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

Read More