Natasha Alkhatib (Télécom Paris), Lina Achaji (INRIA), Maria Mushtaq (Télécom Paris), Hadi Ghauch (Télécom Paris), Jean-Luc Danger (Télécom Paris)

The adoption of external connectivity on modern vehicles and the increasing integration of complex automotive software paved the way for novel attack scenarios exploiting the vulnerabilities of in-vehicle protocols. The Controller Area Network (CAN) bus, a widely used communication network in vehicles between electronic control units (ECUs), therefore requires urgent monitoring. Predicting sophisticated intrusions that affect interdependencies between several CAN signals transmitted by distinct IDs requires modeling two key dimensions: 1) time dimension, where we model the temporal relationships between signals carried by each ID separately 2) interaction dimension where we model the interaction between IDs, i.e., how the state of each CAN ID affects the others. In this work, we propose a novel deep learning-based multi-agent intrusion detection system, AMICA, that uses an attention-based self-supervised learning technique to detect stealthy in-vehicle intrusions, i.e., those that that not only disturb normal timing or ID distributions but also carried data values by multiple IDs, along with others. The proposed model is evaluated on the benchmark dataset SynCAN. Our source code is available at: https://github.com/linaashaji/AMICA

View More Papers

Automatic Retrieval of Privacy Factors from IoMT Policies: ML...

Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Read More

Cooperative Perception for Safe Control of Autonomous Vehicles under...

Hongchao Zhang (Washington University in St. Louis), Zhouchi Li (Worcester Polytechnic Institute), Shiyu Cheng (Washington University in St. Louis), Andrew Clark (Washington University in St. Louis)

Read More

Brokenwire: Wireless Disruption of CCS Electric Vehicle Charging

Sebastian Köhler (University of Oxford), Richard Baker (University of Oxford), Martin Strohmeier (armasuisse Science + Technology), Ivan Martinovic (University of Oxford)

Read More

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More