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Abstract—The adoption of external connectivity on modern
vehicles and the increasing integration of complex automotive
software paved the way for novel attack scenarios exploiting
the vulnerabilities of in-vehicle protocols. The Controller Area
Network (CAN) bus, a widely used communication network in ve-
hicles between electronic control units (ECUs), therefore requires
urgent monitoring. Predicting sophisticated intrusions that affect
interdependencies between several CAN signals transmitted by
distinct IDs requires modeling two key dimensions: 1) time dimen-
sion, where we model the temporal relationships between signals
carried by each ID separately 2) interaction dimension where
we model the interaction between IDs, i.e., how the state of each
CAN ID affects the others. In this work, we propose a novel deep
learning-based multi-agent intrusion detection system, AMICA,
that uses an attention-based self-supervised learning technique to
detect stealthy in-vehicle intrusions, i.e., those that that not only
disturb normal timing or ID distributions but also carried data
values by multiple IDs, along with others. The proposed model is
evaluated on the benchmark dataset SynCAN. Our source code
is available at: https://github.com/linaashaji/AMICA

Index Terms—CAN, intrusion detection, Controller Area Net-
work, in-vehicle network, deep learning

I. INTRODUCTION

With the increasing complexity and connectivity of modern
vehicles, the expanding threat landscape of the in-vehicle
network (IVN) which connects various electronic control units
(ECUs) is raising concerns. A range of potential security risks
can compromise the safety and functionality of a vehicle
putting the life of drivers and passengers in danger. By
connecting to the vehicles, hackers are in fact managing to
discover and exploit the IVN systems’ vulnerabilities and
launch disruptive cyberattacks.
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Despite being widely deployed in cars today, the Controller
Area Network (CAN) technology, responsible for delivering
reliable communication between several ECUs lacks important
security mechanisms mainly authentication and encryption. To
mitigate the severe aftermath, numerous intrusion detection
approaches have been proposed to detect attacks against IVN.
In such settings, observations of CAN network packets are sent
sequentially to a detector that is tasked with detecting threats,
particularly those that may not be caught by other security
measures, such as zero-day vulnerabilities or insider attacks.

Unfortunately, most available approaches for intrusion de-
tection don’t handle the challenging structure of the CAN
protocol. A suitable IDS for CAN must take into consideration
its challenging message transmission mechanism, i.e only a
single message can be transmitted at any point in time. In fact,
some intrusions can only be detected by monitoring the inter-
dependencies of several transmitted signals asynchronously.
To overcome the shortcomings of previous approaches in the
context of CAN IDS, we present AMICA, an attention-based
IDS, that monitors asynchronously transmitted signals carried
by several CAN Identifiers (ID) in the CAN. Inspired by the
success of BERT model in detecting in-vehicle intrusions and
the outstanding performance of Transformers in addressing
multi-agent problems, we propose a BERT-based IDS that
predicts intrusions on CAN by modeling two key dimensions:
1) time dimension, where we model the temporal relationships
between signals carried by each ID separately 2) interaction
dimension where we model the interaction between IDs, i.e.,
how the state of each CAN ID affects the others.

II. RELATED WORK

Techniques based on unsupervised deep learning have been
widely used for detecting known and unknown intrusions on
the CAN bus [1], [2]. Despite their efficiency, most of these
works consider detecting intrusions on signals transmitted by
each ID separately without taking into consideration their
interdependencies, thus incapable of detecting sophisticated
attacks. Few works have addressed this challenging problem
such as [5] who introduced separate LSTM modules for each
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CAN ID followed by a shared autoencoder-based module
“CANet” tailored to work on the signal space of CAN data.
However, there are still some limitations to using LSTM for
modeling sequential data. First, although LSTM can capture
the sequential information by the recurrence formula, it can-
not make each element in a sequence encoding the context
information from both the left and right context. However, it
is crucial to observe the complete context information instead
of only the information from previous steps when detecting
malicious attacks based on CAN messages.

To address the existing limitations of LSTM-based models,
researchers have started to leverage the Bidirectional Encoder
Representations from Transformers (BERT) [4] for anomaly
detection. Recently, Alkhatib et al. [10] proposed CAN-BERT,
an IDS based on the BERT model tasked with monitoring
the sequence of transmitted IDs through time and detecting
intrusions on CAN bus by explicitly encoding the common
patterns shared by all CAN ID normal sequences. However,
their proposed model only regards the timing of each ID and/or
the sequential nature of IDs and cannot detect attacks that do
not disrupt normal timing or ID distributions.

Devising a multi-agent intrusion detection system is chal-
lenging since the interrelations between asynchronous CAN
signals transmitted by distinct agents (IDs) are complex. To
overcome the challenges of building such systems, Transform-
ers have been widely adopted. In fact, Arnab et al. [6] and
Gedas et al. [9] proposed a spatio-temporal model for video
classification tasks. Achaji et al. [7] and Ye et al. [8] proposed
a transformer-based multi-agent model that takes into account
the interactions between several agents with respect to time
and space for multi-agent trajectory prediction.

III. PROPOSED FRAMEWORK: AMICA

In this section, we describe our proposed model, AMICA,
which tackles the asynchronous nature of the CAN protocol,
in which messages are sent by various identifiers at different
times. The different elements of the model are described as
follows:

A. Input Formulation

Let I = {A;, As,..., Ax} be the set of all possible CAN
IDs. The input to the model, denoted by X, is composed of all
the messages sent by different IDs in a temporal window of
horizon T. We define the input as X = {X1,Xs,..., XN},
where X; = {@i¢,,...,Tit,,. .., Tty ; represents A;’s or-
dered set of message payloads, i.e. signals, transmitted during
the horizon T, t; < T is the message global timestamp with
respect to T, and N is the total number of IDs.

B. Temporal Module

1) Temporal Embedding: Message x;, € R% transmitted
at time ¢ and carried by ID A; is fed into its correspond-
ing Temporal-based module T'M;. Each module T'M; has
a different set of weights that will be optimized separately.
Since different IDs can transmit various amounts of signals,
all messages will be projected into a d—dimensional space

via a single linear layer where Z,; = W;x;; + b;. T
represents the projected signal, W; € R?*% are the weights,
and b; € R? represents the bias. Transformer models have
no notion of time when computing attention for each of
the input’s elements. Usually, Transformer embedding layers
are coupled with a positional encoding layer that will inject
the timestamp of each input message x;; when fed to its
associated module 7'M;. However, since messages are sent
through asynchronous transmission, the input X composed of
ordered X; sets is an unordered set of x;; signals. Thus, we
employ a global positioning encoding layer that will encode
the relative position of a message x;, with respect to the
input set X. The global positional encoding will follow the
same sinusoidal formulation as in [3] and will be a function
of the global timestamp ¢, 7(¢). As opposed to the local
positional encoding, a global positional encoding layer can
be helpful to make the model learn the relative temporal
dependencies between signals transmitted by different CAN
IDs. The temporal embedding z; , will be aggregated by 7(t),
Tip = Tis + 7(1).

2) Temporal Encoder: The Temporal encoder is a bidirec-
tional model that uses the scaled dot-product self-attention
layer proposed by [1]. Unlike, LSTM-based solutions [5]
that leverage left-to-right temporal conditioning, bidirectional
models are strictly more powerful [4]. The self-attention layer
is an operation over the queries (Q), keys (K), and values (V)
vectors:

Attention(Q, K, V) = softmaz(QK™ /D + M)V (1)
= AV

Q, K, and V are the parametric linear projections of the
input embedding vector X;. In the Temporal Encoder case,
the attention weights A denote the relative score given to each
time step compared to the other time steps for each ID A;.
Since the number of transmitted messages carried by each ID
is dynamic over time, we padded the input sequence to a fixed
number of messages and then applied a corresponding padding
mask M to the Softmax function presented in (1). In addition
to the attention layer, the temporal encoder is also composed
of a point-wise feed-forward (P f f) and normalization layers
(LN) presented by the following equations:

Xi=LN(Pff(X;)+ X)) (3)
C. Interaction Module

The interaction module is responsible for encoding the inter-
dependencies of signals carried by different IDs. In contrast
to the spatio-temporal and multi-agent systems [6], [7], the
signals are transmitted asynchronously in the CAN bus, i.e., it
is not possible to catch the correlations between signals with
different IDs at the same time. Thus, we build an encoder that
takes as input an ordered set of signals, denoted as Xa, and
which correspond to a set of encoded signals with different
IDs in a range of horizon AT, where AT is a hyperparameter
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Fig. 1. Overview of the AMICA model architecture. A sequence of ordered C

AN messages (signals) M are fed to their corresponding temporal ID encoder.

In each sequence, a pre-defined ratio of the input messages is masked (colored in red). After being processed by their corresponding temporal ID encoder,
the Delta encoder receives them and outputs the encodings of the previously masked messages in a fixed time window.

€ [1,T]. The ratio Ra = T/AT represents a trade-off
between the model interaction capabilities and the model
complexity. For instance, RA = 1 means that the model can
calculate a correlation between all signals transmitted during T
timestamps. However, since the complexity of attention-based
modules is quadratic in terms of sequence length, increasing
Ra can decrease the model complexity from ¢ = O(7?) in
the ultimate case to ¢ = O(Ra-AT?) = O(T-AT) < O(T?)
in general cases.

1) Delta Embedding: Similar to the temporal embedding
in Section (III-B1), we have applied temporal encoding with
the purpose of injecting a notion of time to the later attention
modules. However, the temporal encoding in this module is a
local temporal encoding 7(p) representing the relative position
p of a signal w.r.t the local XA input. Additionally, a second
encoding that reflects the ID encoding is implemented in this
module. It injects an encoding 7(4) based on the message car-
ried by the A; for each message in X . The output embedding
will be formulated as Ta, , = Wxa, , + 7(i) + 7(p), where
W are the weights of the linear projection layer.

2) Delta Encoder: The delta encoder has the same ar-
chitecture and associated equations of the temporal encoder
presented in section (I1I-B2) following equations (2), (3). Con-
trary to the Temporal Module that has N separate Temporal
Encoders, the Delta encoders will all share the same trainable
weights independently of the temporal window to which X
belongs.

IV. TRAINING PROCEDURE
A. Forward Pass

The detection of stealthy attacks against CAN necessitates
monitoring large window sizes of CAN messages (signals).
However, large input sequences have always been a major
problem for various deep learning models resulting in van-
ishing gradient for LSTMs and quadratic time increase for
Transformers. To mitigate this issue, for each time window w,
we first feed the signals that are handled by their respective
ID to their corresponding temporal encoder, i.e., although
if a huge time lapse occurs between same-ID signals, the
generated temporal encodings contain the signals’ contextual
representations. Once all encodings are obtained, they are fed
to the delta encoder which iteratively processes and outputs
the masked inputs for each interval Ar << w.

B. Backward Pass

Although the iterative process handled by the delta encoder
is time-consuming when training, it is advantageous for model
optimization during backpropagation. In fact, after each Arp,
the model’s loss is backpropagated and the model’s learnable
parameters are updated. For instance, if Ar = 250 and w =
5000, we will perform 20 backpropagations per batch.

To train the AMICA model using self-supervised learn-
ing techniques, we leverage the masked language modeling
(MLM) objective function, proposed originally for training
BERT [4]. The MLM objective consists in masking a per-
centage of the input sequence at random, and then predicting
the masked signals using the output representations. The
masked signals will be forecasted by leveraging contextual
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Fig. 2. Normalized confusion matrices representing the performance of AMICA when detecting diverse attacks on CAN bus for a given threshold ¢.

representation from non-masked input signals, thus the bi-
directional capabilities of the model. For the AMICA model,
we did not embed the input payload values into a discrete
vocabulary. Therefore, the masked signals are replaced by
predefined mask-value that is chosen empirically. In addition,
we consider the mean squared error loss function (depicted in
Equation 4) as the regression-based function for training:

M
L= Z MSE(§inrask.]> T[Maski]) “

where M is total number of masked signals, ¢ is the prediction
of the ¢ — th masked signal, and z is the original value of the
i — th masked signal.

V. ANOMALY SCORE

The quadratic error between the overall masked inputs
and their reconstruction are used to predict whether or not
the sequence of CAN IDs with their respective signals is
anomalous. The sequence is considered anomalous if the total
sum of the masked signals’ reconstruction error is above a
fixed threshold. It’s noteworthy to mention that the threshold is
determined based on normal data as we are considering a self-
supervised learning problem. We thus consider the following
formulated labeling criteria:

1 (abnormal) if 7 ; E(s¢) > ¢
0 (normal)

otherwise

where Y is the CAN sequence’s label, E is the reconstruction
error function, s; is a corresponding masked signal, w is the
considered sequence length, and ¢ is the determined threshold.

VI. EXPERIMENT & RESULTS

To evaluate our proposed method, we used the benchmark
synthetic CAN dataset SynCAN [11]. The dataset is composed
of 10 different message IDs, each with different amounts
of signals per ID and different noisy time frequencies. The
data contains signals that are dependent on one or multiple
other signals. The test data is composed of 6 subsets of equal
time length: plateau, continuous change, playback, flooding,
suppress and normal. We refer readers to [I11] for further
information. For training and evaluation, we use the pyTorch
framework. All computations are performed on a Tesla V100
with 32 GB of installed physical memory (RAM). We train the
network for 80 iterations with batch size 16. Every element in a

TABLE 1

PERFORMANCE OF AMICA FOR DIFFERENT ATTACK TYPES
Attack Recall Precision Fl-score AUC
Plateau 0.97 0.81 0.88 0.89
Continuous 0.74 0.85 0.79 0.85
Playback 0.96 0.78 0.86 0.91
Suppress 0.98 0.82 0.89 0.90
Flooding 0.99 0.87 0.93 0.92
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Fig. 3. ROC curves for diverse types of attack on CAN bus. As the
corresponding AUC values approach 1, the AMICA model is thus assumed
have a good measure of separability between the normal class and the different
attack types.

batch is a series of 5000 consecutive messages. During a single
iteration, a back-propagation is performed every 250 time steps
(Ap = 250) in order to update the network weights. We use
the normal validation set to compute the anomaly detection
threshold ¢. We set ¢ to p + 1.50 = 0.001 where p is the
mean reconstruction loss on normal data and o is the standard
deviation.

We present our results in Table I, Fig. 2, and Fig. 3.
We conclude several performance metrics from the visualized
confusion matrices (seen in Fig. 2) to assess the performance
of AMICA given the threshold ¢ including precision, recall,
F1-score (depicted in Table I), in addition to the ROC curve
along with AUC value (shown in Fig. 3). Our proposed ap-
proach is most prominent when detecting Timing Transparent



(T.T.) [12] attacks such as suppress (Fl-score 0.9, AUC
~ 0.9) and flooding (Fl-score ~ 0.93, AUC 0.92), as
these attacks can hypothetically be identified by monitoring
the frequency of the CAN IDs, i.e., the appearance of new
IDs or disappearance of usually present IDs, irrespective of
the values of their carried signals. The Timing Opaque (T.O.)
[12] attacks including plateau (F1-score =~ 0.88, AUC = 0.89),
continous (Fl-score =~ 0.79, AUC = 0.85), and playback (F1-
score ~ 0.86, AUC =~ 0.91) attacks are slightly less detectable
as they are considered to be stealthier, i.e., they do not disrupt
normal timing or ID distributions, and thus would not be
detected by simply monitoring the frequency of the CAN
IDs. In fact, these attacks solely manipulate the signal values
and affect their correlations by overwriting the transmitted
signals with constant values (plateau), slowly drifted values
from their true value (continuous), or by playback of recorded
time series of values of that same signal over a period of
time (playback). Interestingly, our proposed model AMICA
excelled in detecting both 7.T. and T.O. attacks, whereas the
other methods in the literature only fit in frequency-based IDSs
or payload-based IDSs.

~

~
~
~

VII. CONCLUSION & FUTURE WORK

In this paper, we presented a novel deep learning-based
multi-agent system, AMICA, for detecting intrusions on the
widely deployed in-vehicle communication network CAN bus.
As most of the intrusions can only be detected by monitoring
long sequences of ordered CAN messages, we develop a model
that overcomes this challenge by 1) incorporating information
from different relation types between asynchronous signals
and IDs, respectively in each stage of the model due to the
attention mechanism 2) devising a suitable training process.
Additionally, unlike the best-known methods so far, our ap-
proach is designed to detect all types of attacks on the CAN
bus, particularly those that affect the interrelations between
asynchronous signals of distinct CAN IDs. To evaluate our
method, we leverage the SynCAN dataset and obtain promis-
ing results. Our model excels in detecting T.7. attacks, but
it is also able to detect stealthier attacks with slightly less
performance. The obtained results open many avenues for
future research. It would be interesting to compute an anomaly
threshold for each signal separately and to study whether this
can lead to better model performance, particularly when de-
tecting 7.T. attacks. Finally, it is important to explicitly perform
an ablation study on the model architecture along with an
exhaustive hyperparameter tuning to enhance its effectiveness
and complexity.
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