UMassAmherst

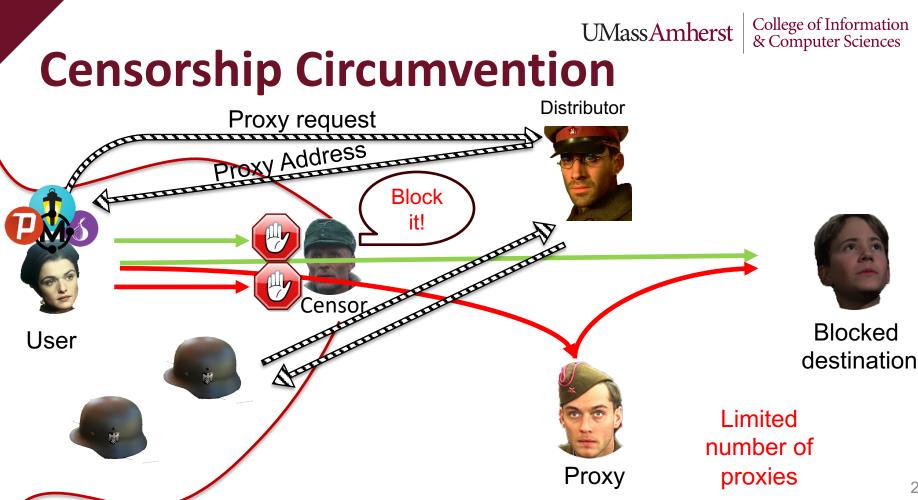
College of Information & Computer Sciences

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game Theory

<u>Milad Nasr¹</u>, Sadegh Farhang², Amir Houmansadr¹, Jens Grossklags³ ¹University of Massachusetts Amherst, ²Pennsylvania State University, ³ Technical University of Munich

Internet Censorship

- Oppression regimes try to stop flow of information by censoring contents, specifically in Internet censorship
- There are a lot of censorship circumvention tools to help the users of such countries
- Proxies are the core technique for circumventions



College of Information

& Computer Sciences

UMassAmherst

Tor Is Blocked in Most Censoring Countries

Proxy distribution is an open challenge in censorship circumvention tools

Our goal: Find the optimal assignment between clients and proxies

Existing Approaches

- Social networks:
 - Proximax [FC 11], Pass it on [IPTPS 10]
- Solving puzzles:
 - CAPTCHA, Feamster et al. [PETS 03]
- Theoretical modeling:
 - rBridge[NDSS 13], Mahdian [Fun with Algorithms.2010]

Orthogonal with our work

Not scalable

UMassAmherst

College of Information & Computer Sciences

UMassAmherst &

College of Information & Computer Sciences

Existing Approaches (Cont.)

• None of existing methods define how to distribute proxies.

Existing Approaches (Cont.)

• Only consider the simple censoring strategies.

What we consider as a censoring strategy

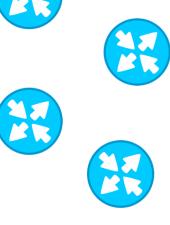
But actually...

College of Information

Our approach

UMassAmherst College of Information & Computer Sciences

- A generic framework which can be applied on different censorship circumvention tools
- We use game theory to model the problem and find the best solution
- We model the optimal censoring strategy and evaluate our model against it


College of Information & Computer Sciences

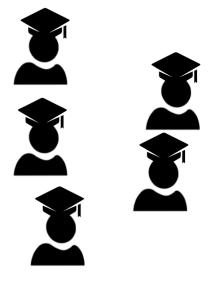
How Does It Work?

We want a stable assignment such that:

Each user gets the most desirable proxies

No any **two** users want to change their proxies and they get the best proxy under this condition

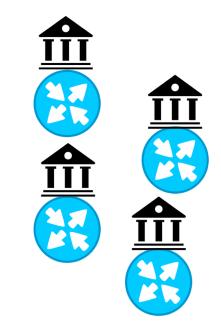
Proxies


How Does It Work? (Cont.)

College admission game Uptime Bandwidth Number of Number of connected users blocked proxies Location Location Users **Proxies Proxy history Users** history

College of Information

12


How Does It Work? (Cont.)

Users

College admission game User (i) utility function for each proxy (x) : $U_{a_i}^t(p_x)$ Proxy (x) utility function for each user (i) : $U_{p_x}^t(a_i)$

We use a customized Gale-Shapley algorithm to find equilibrium assignment between proxies and users

Proxies

College of Information

Suggested metrics

- Proxy (*β*):
 - Number of users who know the proxy
 - Number of users connected to the proxy
 - Total time utilization of the proxy
 - Distance from user

- User (*α*):
 - Proxy utilization
 - Blocked proxy usage

UMassAmherst

Number of requests for new proxy addresses

College of Information & Computer Sciences

- Number of blocked proxies that a user knows
- Distance from proxy

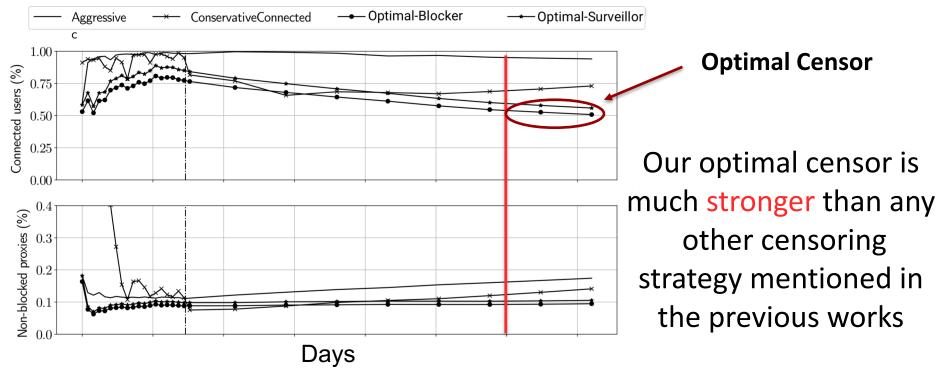
Distributor Type	α_1	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_5$	β_1	β_2	eta_3	eta_4
Strict - Balanced distribution	L	Μ	Η	Η	Μ	L	Μ	Μ	Μ
Strict - Sparse distribution	L	Μ	Η	Η	Η	H	L	Μ	Η
Kind - Balanced distribution	H	Μ	Μ	Μ	Μ	L	Μ	Μ	Μ
Kind - Sparse distribution	H	Μ	Μ	Μ	Н	H	L	Μ	Н

College of Information & Computer Sciences

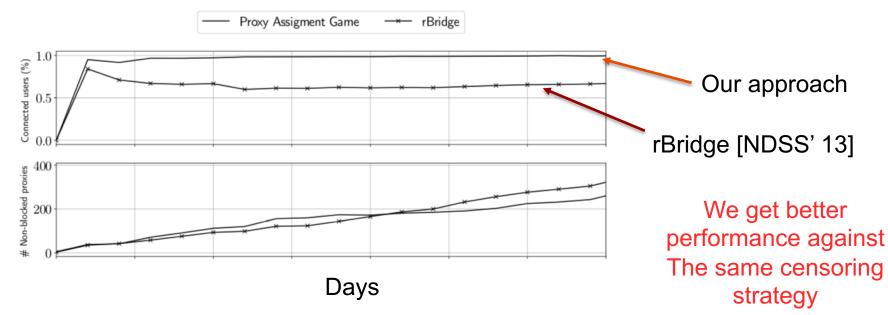
Optimal Censoring Strategy

- Censor decides based on the collective information from the agents
- Optimal censor increases its users' utility while blocking maximum number of proxies:

$$U_C^t = \omega \sum_{a_i \in \mathbb{J}} U_C^t(a_i) + r_{Blocked}$$

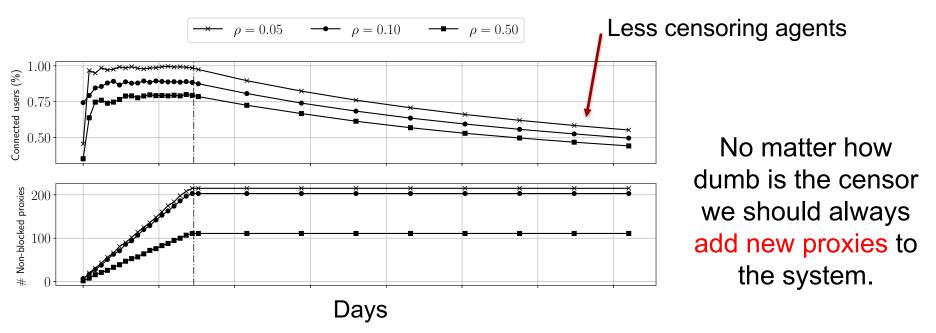


Experiments


Experimental Setup

- We implemented a proxy distribution simulator
- The proxy distributor assigns new proxies at the end of each epoch
- We simulated each experiment for 5 years
- We used different rates of proxies and users

UMassAmherst College of Information & Computer Sciences


Comparison to Previous Works

[NDSS' 13] "rBridge: User Reputation based Tor Bridge Distribution with Privacy Preservation."

College of Information

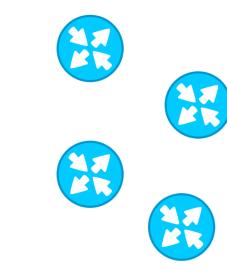
College of Information

UMassAmherst College of Information & Computer Sciences

Summary

- Proxy distribution is a core problem in censorship circumvention tools
- We used game theory to model the problem and derive the optimal answers
- We show the performance of the system against the optimal censoring strategy

COMPUTING FOR THE COMMON GOOD



Massbrowser.cs.umass.edu @massbrowser Join us!

Milad Nasr milad@cs.umass.edu

https://people.cs.umass.edu/~milad/ | @srxzr

How Does It Work? (Cont.)

College of Information & Computer Sciences

Proxies

Users