
Establishing Software Root of Trust Unconditionally

(or, a First Rest Stop on the Never-Ending Road to Provable Security)

Virgil D. Gligor Maverick S.-L. Woo

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

NDSS 2019
San Diego, CA

February 27, 2019
2/27/19 1

Outline

2/27/19 2

I. What is it?
- Definition & relationships

- Unconditional solution

II. Why is it hard?
- 3 Problems

- RoT ≠ software-based, crypto attestation

III. How to do it?
- randomized polynomials

- k-independent (almost) universal hash families; and
- space-time optimal in cWRAM; and
- scalable optimal bounds

IV. Q & A

Full Paper is the CMU-CyLab TR 18-003
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab18003.pdf

2/27/19 3

I. What is it?

Device State:
content of processor registers (R) and (persistent) memories (M)

2/27/19 4

Memory2

NIC

Memory4

Disk controller

CPU4

CPU3

CPU2

Memory3

Memory1

CPU1

Memory0

CPU0Sys Mgt

USB controller

GPU

RAM

System State:
union of all device states at time T

CPU R
M

Bus
System

persistent malware

is unknown
Untrusted Device State:

Don’t
Care

Don’t
Care

Controlled by a Powerful Adversary

Don’t
Care

PC

Init I/O	 P D Don’t
CareR

Initialize

A Verifier: initializes an untrusted system state to chosen content

Verifier

2/27/19 5

Check

checks that the state has all & only chosen content & PC values

USB controller

M

Memory2

NIC

Memory4

Disk controller

CPU4

CPU3

CPU2

Memory3

Memory1

CPU1

Don’t
Care

Sys Mgt

Memory1

CPU1 GPU

Init
I/O	

P
D

CPU R

M

Verifier

Bus
System

Root of Trust (RoT) Establishment

Verifiable
Boot

Verifiable
Boot

Verifiable boot:
either boot code in a secure state
or detect unknown content

Verifiable
Boot

2/27/19 6

Verifiable boot => Secure State => RoT State
Trusted Recovery => . . .

Access Control Models => . . .
. . .

Secure State: RoT state (chosen content) satisfies security predicate P

2/27/19 7

Unconditional Solution

- no Secrets, no Trusted HW Modules, no Bounds on Adversary’s Power

Importance?

- no dependencies on the unknown & unknowable
- a defender has a provable advantage over any adversary
- outlives technology advances.

- need only
- random bits
- device specifications.

*I know of no other unconditional solution to any software security problem

*

2/27/19 8

II. Why is it hard?
I. What is it?

2/27/19 9

Complexity theory?
- non-asymptotic bounds? Very few
- on Device Specs? None

Trusted
Verifier:
- doesn’t disclose random bits ✓
- knows correct outcomes ✓
- measures time securely à Device

- non-asymptotic bounds
- on Device Specs; e.g., ISA ++

(a realistic model of computation?)

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

e.g., Horner’s rule for polynomial evaluation
uniquely optimal in infinite fields: 2d (×,+)

not optimal in finite fields,
nor on any Device ISA++

m

CPU
registers R

M

Device

Initialize

Local
Verifier

space-time optimal
Cm,t

nonce

random
bits

Cnonceß

t?
Cnonce(M,R)?

OK => malware-free

Devic
e
Specs

2/27/19 10

m

CPU
registers R

M

Device

Initialize
space-time optimal

Cm,t

t
Cnonce(M,R)

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

Devic
e
Specs

nonce

random
bits

Cnonceß

- non-asymptotic bounds
- on Device Specs

2/27/19

Dishonest execution:
e.g., changes code and/or data

outputs a guess
uses a powerful remote proxy

- adversary execution?

- how could it help?

e.g., malware beats m-t bounds
=> Cnonce(v) becomes unpredictable

M

CPU

Device

registers R

C’nonce’(v’)ßC’m’,t’(v’)

Initialize

nonce

time(v)
Cnonce(v)

Input

Unused
memory

Output

Device
Initialization

11

v’
≠
v

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

Devic
e
Specs

random
bits

- non-asymptotic bounds
- on Device Specs

Engineering Solution?

e.g., see - segmented memory

Complexity Theory?
- no help.

2/27/19

M

CPU

Device

registers R

C’nonce’(v’)ßC’m’,t’(v’)

- adversary execution

Initialize

nonce

time(v)
Cnonce(v)

Input

Unused
memory

Output

Device
Initialization

v’
≠
v

12

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

Devic
e
Specs

random
bits

- non-asymptotic bounds
- on Device Specs

2/27/19 13

Reduction is insufficient !

- adversary execution

CPU

Device

Initialize

registers R

Device
Initialization

Input

Unused
memory

Output

Cnonce(v)ßCm,t(v)

nonce

time(v)
Cnonce(v)

future-posted
Interrupt
& reboot

v

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

Devic
e
Specs

random
bits

- non-asymptotic bounds
- on Device Specs

2/27/19 14

CPU

Device

Initialize

registers R

disable interrupts

Solution?
control flow integrity after Cnonce ends

Reduction is insufficient !

=>
control flow integrity before Cnonce starts!

- adversary execution

Device
Initialization

Input

Unused
memory

Output

Cnonce(v)ßCm,t(v)

nonce

time(v)
Cnonce(v)

v

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

Devic
e
Specs

random
bits

- non-asymptotic bounds
- on Device Specs

✓

2/27/19 15

2. Verifiable Control Flow ✓ Cnonce-jßCm,t

Mj

Device j

CPU j
registers Rj

Cnonce-ißCm,t

Mi

Device i

CPU i
registers Ri

3. Two Devices, or more?

- adversary execution

≤ malware-free Device Cm,t
Trusted
Verifier

1. space-time optimal

Local
Verifier

✓

Devic
e
Specs

random
bits

- non-asymptotic bounds
- on Device Specs

noncej

time gap

Device i corrupts
verified Device j

restores
Cmi,ti

Device jCmj,tj

- sequential verification
fails

noncei

Cmi,ti Device i

2/27/19 16

Device j

Device i

restores
Cmi,ti

Cmi,ti

nonceiCmj,tj

Slow Fast

noncej

ends
early

- ordinary concurrency
fails

2/27/19 17

for Device j

Cmj,tj

“verify”

Device j

noncei

Cmi,ti Device i

ends
early

Slow Fast

noncej

- ordinary concurrency
fails

2/27/19 18

2/27/19 19

Cmj,tj

noncej

Cmi,ti

noncei
δstart

δend

Device i
Device j

Cmi,t’i
tI < t’i

- concurrent verification
w/ scalable bounds

2/27/19 20

Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Code Optimality in
Adversary Execution

scalable
bounds

unpredictable
result

Legend: dependency

code
composition

Time-measurement security
- caches? TLB?
- clock jitter?
- multi-processor

interference?
- remote proxy?

verifiably
avoided

2/27/19 21

Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Code Optimality in
Adversary Execution

scalable
bounds

unpredictable
result

code
composition

Time-measurement security

Software-based
Attestation

has different
goals

- caches? TLB?
- clock jitter?
- multi-processor

interference?
- remote proxy?

verifiably
avoided

2/27/19 22

Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Signatures/MACs
based on secrets in HW

scalable
bounds

unpredictable
result

code
composition

Cryptographic
Attestation
has different

goals

2/27/19 23

III. How to do it
II. Why is it hard?
I. What is it?

2/27/19 24

Solution Overview

Randomized Polynomials

- k-independent uniform coefficients, independent of input x

- k-independent (almost) universal hash function family
and

- (m, t)-optimal in the concrete Word Random Access Machine (cWRAM)
and

- optimal bounds m and t are scalable; e.g., no mandatory m�t tradeoffs

new

new
kind

new

new

2/27/19 25

- Constants: w-bit word, up to 2 operands/instruction
instructions execute in unit time

MM

Overview of the cWRAM ISA++

- variable shiftr/l(Ri, Rj),	variable rotater/l(Ri, Rj),	.	.	.
- multiplication	(1	register	output).	.	.	
-mod (aka., division-with-remainder) . . .

- ISA: all (un)signed integer instructions
- All Loads, Stores, Register transfers
- All Unconditional & Conditional Branches, all branch types

- all predicates with 1 or 2 operands
- Halt
- All Computation Instructions:

- addition, subtraction, logic, shiftr/l(Ri, α), rotater/l(Ri, α), . . .

- Memory: M words
- Processor registers R: GPRs, PC, PSW, Special Processor + Flag & I/O Registers
- Addressing: immediate, relative, direct, indirect
- Architecture features: caches, virtual memory, TLBs, pipelining, multi-core processors

- Constants: w-bit word, up to 2 operands/instruction
instructions execute in unit time

2/27/19 26

si = Σ rj(i+1)j (mod p)
j = 0

k-1

{ r0…rk-1,x } Zp

random
bits

$

0

i = d
Σ + (si vi)�xi (mod p),

nonce

d = |v|-1
Hr0…rk-1,x(v) =	

randomized polynomial family

m-t optimal bounds on cWRAM: m = k + 22, t = (6k - 4)6d

Cnonce(v) = Hr0…rk-1,x(v) = Hd,k,x(v)

(m’,t’) “<“ (m, t) => Pr [nonce, f,y : f(y) = Hd,k,x(v) | (m’,t’)] ≤ 3
p

ΕΕ

k-independent almost universal hash function family

Scalable bounds: k => m , t and d => t

2/27/19 27

Foundation
Theorem 1

Let w > 3, and p be a prime, 2 < p < 2w-1.
Horner’s rule for one-time honest evaluation of Pd (�) in cWRAM

Pd(�) = Σ ai�xi (mod p) = (. . .(ad�x + ad-1)�x+ . . . +a1)�x + a0 (mod p)

is uniquely (m, t)-optimal if the cWRAM execution space & time
are simultaneously minimized; i.e., m = d+11, t = 6d.

i =	d

0

Answer to A. M. Ostrowski’s 1954 question:

“Is Horner’s rule optimal for polynomial evaluation?”

with non-asymptotic bounds in a realistic model of computation (cWRAM)

2/27/19 28

IV. Q & A

$

CPU

special
processor
registers

Input

Initialize GPR (t0)

constants
chosen to fill

unused memory

Horner()

Output
Hd,k,x(v)

Local
Verifier

v

Device

Disable: asynch. events,
caches/TLB,. . .
Set: other processor regs.

Initialize

r0 r1 . . . rk-1
x d. . .

z
k. . . si

k+8
GPR

nonce
= r0 …rk-1,x

random
bits

Hd,kx(v)
t0+(6k-4)6d

OK => malware-free
log p < w

à 2nd Pass w/ ordinary UHF 2/27/19

k+8
GPR

Devic
e
Specs

2/27/19 30

Cnonce1ßCm,t

segment M1

Local
Verifier

random
bits

CPU
registers R

.

noncennonce1

time1
Cnonce1(v1)

verifier’s random choice of segment i

Cnoncei ßCm,t

segment Mi

CnoncenßCm,t

segment Mn

timei
Cnoncei(vi)

timen
Cnoncen(vn)

noncei

Memory M

<<
round trip

to
remote
adversary

2/27/19 31

CPU i
registers R

CPU 1
registers R1

Cnonce1ßCm,t

segment M1

Local
Verifier

random
bits

CPUj
registers Rj

.

noncennonce1

time1
Cnonce1(v1)

Cnoncej ßCm,t

segment Mj

CnoncenßCm,t

segment Mn

noncej

timej
Cnoncej(vj)

timen
Cnoncen(vn)

Memory M

<<
round trip

to
remote
adversary

2/27/19 32

Implementation Notes
(Appendix C of CMU-CyLab TR 18-003)

Optimal Code: , loop control – simple on most real processors
Horner-rule step? (recall: p is largest prime in w bits)

+ (si vi)

m, T M, T M, t
different encodings => different results => SINGLE CHOICE!

multiply
mod p
add
mod p

multiply
div p
multiply p &
subtract
add
div	p
multiply	p	&
subtract

multiply-add mod 2w

reduction mod p @ end

Þ 8 + 3 (reduction)
instructions

