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I. What is it? 
- Definition & relationships 

- Unconditional solution 

II. Why is it hard?
- 3 Problems

- RoT ≠ software-based, crypto attestation

III. How to do it?
- randomized polynomials

- k-independent (almost) universal hash families; and
- space-time optimal in cWRAM; and
- scalable optimal bounds

IV. Q & A

Full Paper is the CMU-CyLab TR 18-003
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab18003.pdf
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I. What is it? 



Device State: 
content of processor registers (R) and (persistent) memories (M)
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Verifiable boot: 
either boot code in a secure state
or detect unknown content

Verifiable 
Boot
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Verifiable boot => Secure State => RoT State
Trusted Recovery => . . . 

Access Control Models => . . .
. . . 

Secure State: RoT state (chosen content) satisfies security predicate P
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Unconditional Solution

- no Secrets, no Trusted HW Modules, no Bounds on Adversary’s Power

Importance?

- no dependencies on the unknown & unknowable
- a defender has a provable advantage over any adversary
- outlives technology advances.

- need only 
- random bits
- device specifications.

________________
*I know of no other unconditional solution to any software security problem

*
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II. Why is it hard? 
I. What is it? 
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Complexity theory?
- non-asymptotic bounds?  Very few 
- on Device Specs? None

Trusted  
Verifier:
- doesn’t disclose random bits ✓
- knows correct outcomes ✓
- measures time securely à Device

- non-asymptotic bounds 
- on Device Specs; e.g., ISA ++

(a realistic model of computation?) 

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal 

e.g., Horner’s rule for polynomial evaluation
uniquely optimal in infinite fields: 2d (×,+)

not optimal in finite fields, 
nor on any Device ISA++
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Devic
e
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- non-asymptotic bounds 
- on Device Specs
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Dishonest execution:
e.g., changes code and/or data

outputs a guess
uses a powerful remote proxy

- adversary execution?

- how could it help? 

e.g., malware beats m-t bounds 
=> Cnonce(v) becomes unpredictable

M

CPU

Device

registers R

C’nonce’(v’)ßC’m’,t’(v’)

Initialize

nonce

time(v) 
Cnonce(v)

Input

Unused
memory  

Output

Device
Initialization

11

v’
≠
v

≤ malware-free DeviceCm,t
Trusted
Verifier

1. space-time optimal 

Local
Verifier

Devic
e
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random 
bits

- non-asymptotic bounds 
- on Device Specs

Engineering Solution? 

e.g., see - segmented memory

Complexity Theory? 
- no help. 
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1. space-time optimal 

Local
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e
Specs
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bits

- non-asymptotic bounds 
- on Device Specs
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Reduction is insufficient ! 

- adversary execution
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- non-asymptotic bounds 
- on Device Specs



2/27/19 14

CPU

Device

Initialize

registers R

disable interrupts 

Solution? 
control flow integrity after Cnonce ends

Reduction is insufficient ! 

=> 
control flow integrity before Cnonce starts!

- adversary execution
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- non-asymptotic bounds 
- on Device Specs

✓
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2. Verifiable Control Flow ✓ Cnonce-jßCm,t
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registers Ri

3. Two Devices, or more?

- adversary execution
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e
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random 
bits

- non-asymptotic bounds 
- on Device Specs
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time gap

Device i corrupts
verified Device j

restores
Cmi,ti

Device jCmj,tj

- sequential verification
fails

noncei

Cmi,ti Device i
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Device j

Device i
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Cmi,ti

Cmi,ti
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Slow Fast
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ends
early

- ordinary concurrency
fails
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for Device j



Cmj,tj

“verify”
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Cmi,ti Device i
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- ordinary concurrency
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Cmj,tj
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Cmi,ti

noncei
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Device i
Device j

Cmi,t’i
tI < t’i

- concurrent verification
w/ scalable bounds
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Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Code Optimality in
Adversary Execution

scalable 
bounds

unpredictable
result

Legend:       dependency  

code
composition

Time-measurement security
- caches? TLB?
- clock jitter?
- multi-processor 

interference?
- remote proxy?

verifiably 
avoided
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Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Code Optimality in
Adversary Execution

scalable 
bounds

unpredictable
result

code
composition

Time-measurement security

Software-based
Attestation

has different 
goals

- caches? TLB?
- clock jitter?
- multi-processor 

interference?
- remote proxy?

verifiably 
avoided



2/27/19 22

Protocol Atomicity
concurrent transaction

order and duration
verifiable

control flow

Signatures/MACs
based on secrets in HW

scalable 
bounds

unpredictable
result

code
composition

Cryptographic
Attestation
has different 

goals
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III. How to do it 
II. Why is it hard? 
I. What is it? 
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Solution Overview

Randomized Polynomials 

- k-independent uniform coefficients, independent of input x 

- k-independent (almost) universal hash function family
and

- (m, t)-optimal in the concrete Word Random Access Machine (cWRAM)
and

- optimal bounds m and t are scalable; e.g., no mandatory m�t tradeoffs 

new

new 
kind

new

new 
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- Constants: w-bit word, up to 2 operands/instruction 
instructions execute in unit time

MM

Overview of the cWRAM ISA++

- variable shiftr/l(Ri, Rj),	variable rotater/l(Ri, Rj),	.	.	.
- multiplication	(1	register	output).	.	.	
-mod (aka., division-with-remainder) . . .

- ISA: all (un)signed integer instructions
- All Loads, Stores, Register transfers
- All Unconditional & Conditional Branches, all branch types

- all predicates with 1 or 2 operands
- Halt 
- All Computation Instructions: 

- addition, subtraction, logic, shiftr/l(Ri, α), rotater/l(Ri, α), . . .

- Memory: M words
- Processor registers R: GPRs, PC, PSW, Special Processor + Flag & I/O Registers
- Addressing: immediate, relative, direct, indirect
- Architecture features: caches, virtual memory, TLBs, pipelining, multi-core processors

- Constants: w-bit word, up to 2 operands/instruction 
instructions execute in unit time
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si = Σ rj(i+1)j (mod p)
j = 0

k-1    

{ r0…rk-1,x }     Zp

random 
bits

$    

0

i = d
Σ + (si vi)�xi (mod p),

nonce

d = |v|-1
Hr0…rk-1,x(v) =	

randomized polynomial family

m-t optimal bounds on cWRAM:  m = k + 22, t = (6k - 4)6d

Cnonce(v) = Hr0…rk-1,x(v) = Hd,k,x(v)

(m’,t’) “<“ (m, t)  => Pr [nonce,    f,y : f(y) = Hd,k,x(v) | (m’,t’) ] ≤ 3                 
p          

ΕΕ

k-independent almost universal hash function family

Scalable bounds: k    => m  , t    and  d    => t
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Foundation
Theorem 1

Let w > 3, and p be a prime, 2 < p < 2w-1. 
Horner’s rule for one-time honest evaluation of Pd (�) in cWRAM

Pd(�) = Σ ai�xi (mod p) = (. . .(ad�x + ad-1)�x+ . . . +a1)�x + a0 (mod p)

is uniquely (m, t)-optimal if the cWRAM execution space & time 
are simultaneously minimized; i.e., m = d+11, t = 6d.

i =	d

0

Answer to A. M. Ostrowski’s 1954 question:

“Is Horner’s rule optimal for polynomial evaluation?”

with non-asymptotic bounds in a realistic model of computation (cWRAM) 
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IV. Q & A 
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log p < w

à 2nd Pass w/ ordinary UHF 2/27/19
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e
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Implementation Notes 
(Appendix C of CMU-CyLab TR 18-003)

Optimal Code:   , loop control – simple on most real processors
Horner-rule step? (recall: p is largest prime in w bits)

+ (si vi)

m, T M, T M, t
different encodings => different results => SINGLE CHOICE!

multiply
mod p
add
mod p 

multiply
div p
multiply p &
subtract
add
div	p
multiply	p	&
subtract

multiply-add mod 2w

reduction mod p @ end

Þ 8 + 3 (reduction) 
instructions


