

PRIVAC

GROUP

(https://eprint.iacr.org/2018/472.pdf)

Giulio Malavolta*, Pedro Moreno-Sanchez*, @pedrorechez

Clara Schneidewind[†], Aniket Kate[¶], @aniketpkate

> Matteo Maffei† @matteo_maffei

*FAU Erlangen-Nürnberg

†TU Wien

Purdue University

Motivation: Scalability Issues

- Bitcoin has a low transaction rate (~10 tx/sec)
 - Visa, in contrast, supports >10K tx/sec
- Scalability approaches:
 - On-chain (consensus layer or layer 1): e.g., Sharding
 - Off-chain (application layer or layer 2): e.g., Payment Channel Networks

Motivation: Scalability Issues

- Bitcoin has a low transaction rate (~10 tx/sec)
 - Visa, in contrast, supports >10K tx/sec
- Scalability approaches:
 - On-chain (consensus layer or layer 1): e.g., Sharding
 - Off-chain (application layer or layer 2):
 e.g., Payment Channel Networks

Lightning Network (Bitcoin) Raiden Network (Ethereum)

Many other research projects (Bolt, Z-Channels, Perun, etc.)

Contributions

The Wormhole Attack: A novel attack on Payment Channel Network Security

Background on Payment Channel Networks

Payment Channels: Open

5

Payment Channels: Transactions

Blockchain

Payment Channels: Transactions

Payment Channels: Close

Blockchain

The Lightning Network (LN)

"Multi-hop-Lock"

Security and Privacy Issues in Existing PCNs

Security + Privacy in PCNs

Are off-chain payments in PCNs secure? (No honest participant looses money!)

Are off-chain payments in PCNs privacy-preserving by default? (individual payments are not recorded on the blockchain!)

Security + Privacy in PCNs

Are off-chain payments in PCNs secure? (No honest participant looses money!)

Are off-chain payments in PCNs privacy-preserving by default?

(individual payments are not recorded on the blockchain!)

NO!

Attacker earns 0.3 BTC (own fees + B's fees)

Privacy Issues in HTLC-based Payments

Relationship Anonymity: On-path adversaries do not learn who pays to whom
Privacy Issues in HTLC-based Payments

Relationship Anonymity: On-path adversaries do not learn who pays to whom

Privacy Issues in HTLC-based Payments

Relationship Anonymity: On-path adversaries do not learn who pays to whom

Privacy Issues in HTLC-based Payments

Relationship Anonymity: On-path adversaries do not learn who pays to whom

Solving Security and Privacy Issues in Payment Channel Networks

Solving Security + Privacy Issues

Solving Security + Privacy Issues

Solving Security + Privacy Issues

Desired Properties

1. Atomicity:

If a user's right lock gets opened, he can open his left lock

2. Consistency:

A user can open his left lock only if his right lock was released

3. Relationship Anonymity:

A user learns about no other participant of the payment path than his direct neighbours

No coin loss

No Wormhole Attacks

Privacy

Anonymous Multi-hop-Locks (AMHL)

Anonymous Multi-hop-Locks (AMHL)

ECDSA-based Secure PCNs

Alice

shared signature using a shared key and randomness

shared signature using a shared key and randomness

embedding of random share (condition) k

shared signature using a shared key and randomness

embedding of random share (condition) k

"half signature" without **k** but still with respect to r_A*r_B***k***G

Properties/Evaluation

- Security and Privacy proven in the UC Framework
- Compatible with Bitcoin and current PCNs

Implemented in the Lightning Network (https://github.com/cfromknecht/tpec)

Reduces transaction size for conditional payments

- Makes settlement transactions indistinguishable from regular ones (Fungibility)
 Alice
 AB
 AB
- Little overhead:
 - < 500 bytes communication</p>
 - ✓ few ms computation

Interoperability

- AMHLs are suitable for cross-currency usage
 - even with different primitive instantiations
 - Inter-currency payment channels
 - Atomic swaps

Summary

The Wormhole Attack: A novel attack on Payment Channel Network Security

Additional Material

HTLC in practice

Implications of the Wormhole Attack

 Collateral cost: Honest intermediaries' coins are locked (cannot be used in a successful payment)

 Attacked intermediaries cannot distinguish between an attack and a failed payment _____

Destroys the incentive for intermediaries to participate in multi-hop payments at all

Properties of Multi-hop-lock-based PCN

Minimal requirements

which (cryptographic) constructs are needed for implementing the Locks

> Compatibility + Interoperability

Communication

Which amount of communication is required for building payment paths from locks

Performance

Blockchain Effects How do the locks influence the transactions visible on the Blockchain

> Fungibility + Blockchain growth

Properties of the Different Constructions

	Current PCN	OWH-based PCN	Schnorr-based PCN	ECDSA-based PCN
Atomicity				
Consistency	×			
Privacy	×	~		~
Compatibility/ Interoperability	×	partly	partly	
Fungibility + reduced transaction size	×	×		

Embedding of arbitrary random shares (conditions)

ECDSA-based Lock

ECDSA-based Lock

