
FAKULTÄT FÜR
!NFORMATIK

Faculty of Informatics S&P SECURITY &
PRIVACY
GROUP

Anonymous Multi-Hop Locks
for Blockchain Scalability and

Interoperability

*FAU Erlangen-Nürnberg †TU Wien ❡Purdue University

Giulio Malavolta*, Pedro Moreno-Sanchez†,  

Clara Schneidewind†, Aniket Kate❡,  

Matteo Maffei†

@pedrorechez

@aniketpkate

@matteo_maffei

(https://eprint.iacr.org/2018/472.pdf)

https://eprint.iacr.org/2018/472.pdf

 2

Motivation: Scalability Issues

‣ Bitcoin has a low transaction rate (~10 tx/sec)

• Visa, in contrast, supports >10K tx/sec

‣ Scalability approaches:

• On-chain (consensus layer or layer 1):  
e.g., Sharding

• Off-chain (application layer or layer 2):  
e.g., Payment Channel Networks

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

Many other research projects (Bolt, Z-Channels, Perun, etc.)

 2

Motivation: Scalability Issues

‣ Bitcoin has a low transaction rate (~10 tx/sec)

• Visa, in contrast, supports >10K tx/sec

‣ Scalability approaches:

• On-chain (consensus layer or layer 1):  
e.g., Sharding

• Off-chain (application layer or layer 2):  
e.g., Payment Channel Networks

 3

Contributions

The Wormhole Attack:  
A novel attack on Payment
Channel Network Security

Concrete constructions of AMHLs that

… got implemented in Bitcoin’s
Lightning Network

… enable inter-blockchain
Payment Channels

… are efficient

AMHLs: A new primitive for
secure + anonymous Payment

Channel Networks

 4

Background on Payment Channel
Networks

 5

Payment Channels: Open

Alice Bob

Blockchain

5 (Alice)

5 (Alice,Bob)

Multisig Contract

Can be spent only with the signatures
of both Alice and Bob

5 (Alice)

≤

>
Alice

5 1

∨

 6

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

Guarantee for Bob to receive 1 BTC
(when published before)

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>

4 1

Alice Bob

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
Alice

∨

 7

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice ?? Bob

Guarantee for Bob to receive 2 BTC
(when polished before)

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>

3 2

Alice Bob

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
Alice

∨

5 (Alice, Bob)
3 (Alice)

2 (Bob)

Alice ?? Bob

5 (Alice, Bob)
3 (Alice)

2 (Bob)

Alice ?? Bob

Payment Channels: Close

Blockchain

≤

Alice Bob

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
Alice

∨

 9

Payment Channel Networks

4 1 2 3

Alice Bob Carol
Send

1 BTC to Carol

 9

Payment Channel Networks

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

 9

Payment Channel Networks

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC

to Carol

Should happen atomically

 9

Payment Channel Networks

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC

to Carol

Should happen atomically

 9

Payment Channel Networks

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

Fee acts as an incentive
for Bob to participate in

the payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC

to Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC +
fee to Bob

 10

The Lightning Network (LN)

5

 11

Payment Channels in the LN

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 1

Alice Bob
y

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

5

 11

Payment Channels in the LN

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob
can “open” + publish the

transaction on the
blockchain for enforcing

the payment

5

 11

Payment Channels in the LN

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x After time the
transaction cannot be

published anymore
on the blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob
can “open” + publish the

transaction on the
blockchain for enforcing

the payment

5

 11

Payment Channels in the LN

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

HTLC (Alice, Bob, 1, y,):
Alice pays Bob 1 BTC iff Bob shows some

x such that H(x) = y before

After time the
transaction cannot be

published anymore
on the blockchain

“Multi-hop-Lock”

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob
can “open” + publish the

transaction on the
blockchain for enforcing

the payment

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

2 3

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

y

2 3

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t)

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x

2 32 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x x

2 32 31.10.9 3

1

0.9 4.1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y
Requirement: t > t’

(after Carol revealed x to Bob,
there must still be time for Bob to

reveal x to Alice)

x x

2 32 31.10.9 3

1

0.9 4.1

 13

Security and Privacy Issues in
Existing PCNs

 14

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain!)

Are off-chain payments in PCNs secure?
(No honest participant looses money!)

 14

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain!)

Are off-chain payments in PCNs secure?
(No honest participant looses money!)

NO!

NO!

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

B

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

xB

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

x

x

B

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

x

x

x B

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

x

x

x

B considers the payment to
be failed and unlocks his
funds after the timeout

B

 15

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)
x

x

x

x

B considers the payment to
be failed and unlocks his
funds after the timeout

B

gets 1.3 (no
payment to B)

pays 1 (no
payment from B)

Attacker earns 0.3 BTC (own fees + B’s fees)

 16

Privacy Issues in HTLC-based Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)
HTLC(E2,C,v4,y’,t4)

 16

Privacy Issues in HTLC-based Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)
HTLC(E2,C,v4,y’,t4)

 16

Privacy Issues in HTLC-based Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)
HTLC(E2,C,v4,y’,t4)

 16

Privacy Issues in HTLC-based Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)
HTLC(E2,C,v4,y’,t4)

 17

Solving Security and Privacy Issues in
Payment Channel Networks

 18

Solving Security + Privacy Issues

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

Randomised conditions at
each hop that can only be
released by (exactly) the

right neighbour’s key

 18

Solving Security + Privacy Issues

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

k3k1 k2 k4

Setup phase for the
distribution of individual
“randomisation factors”

for users at each hop

Randomised conditions at
each hop that can only be
released by (exactly) the

right neighbour’s key

 18

Solving Security + Privacy Issues

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

k3k1 k2 k4

Setup phase for the
distribution of individual
“randomisation factors”

for users at each hop

Desired Properties

No coin loss

1.Atomicity:  
If a user’s right lock
gets opened, he can
open his left lock

2.Consistency:  
A user can open his left
lock only if his right
lock was released

3.Relationship Anonymity: 
A user learns about no
other participant of the
payment path than his
direct neighbours

No Wormhole Attacks Privacy

Randomised conditions at
each hop that can only be
released by (exactly) the

right neighbour’s key

ECDSA-based
construction

 19

Anonymous Multi-hop-Locks (AMHL)

Ideal functionality
(capturing atomicity,

consistency + relationship
anonymity)

Construction from
homographic one-

way functions

Schnorr-based
construction

provably realise in the UC framework

ECDSA-based
construction

 19

Anonymous Multi-hop-Locks (AMHL)

Ideal functionality
(capturing atomicity,

consistency + relationship
anonymity)

Construction from
homographic one-

way functions

Schnorr-based
construction

ECDSA-based
construction

provably realise in the UC framework

compatible with
Bitcoin, Ethereum,

etc.

 20

ECDSA-based Secure PCNs

 21

Scriptless Scripts

yy

5

 21

Scriptless Scripts

Alice  
(skA)

Bob 
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5

 21

Scriptless Scripts

4 1

Alice  
(skA)

Bob 
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y AB ??k

5

 21

Scriptless Scripts

4 1

Alice  
(skA)

Bob 
(skB)yy

Alice gets sufficient
information for producing a
“half signature” that can be
completed knowing secret k

Bob gets sufficient information
for checking that the “half

signature” can be completed to
a valid signature given k

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y AB ??k

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2B

(k1 + k2 + k3 + k4)*G

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)
B

(k1 + k2 + k3 + k4)*G

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)
B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)

- k4

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)
B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)

- k3 - k4

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)
B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

 22

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)
B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid
key for the right lock

- k2 - k3 - k4

Conditions look random  
(as they differ by a secret

random factor)

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

Signature w.r.t.
a (public)

random elliptic
curve point R

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

shared signature using a
shared key and randomness

rA*rBrA*rB*G skA*skBAB

Signature w.r.t.
a (public)

random elliptic
curve point R

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

shared signature using a
shared key and randomness

rA*rBrA*rB*G skA*skBAB

embedding of random share
(condition) k

rA*rB*k*G rA*rB*k skA*skBAB

Signature w.r.t.
a (public)

random elliptic
curve point R

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

shared signature using a
shared key and randomness

rA*rBrA*rB*G skA*skBAB

embedding of random share
(condition) k

rA*rB*k*G rA*rB*k skA*skBAB

Signature w.r.t.
a (public)

random elliptic
curve point R

rA*rBrA*rB*k*G skA*skBAB
“half signature” without k

but still with respect to
rA*rB*k*G

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

shared signature using a
shared key and randomness

rA*rBrA*rB*G skA*skBAB

embedding of random share
(condition) k

rA*rB*k*G rA*rB*k skA*skBAB

Signature w.r.t.
a (public)

random elliptic
curve point R

rA*rBrA*rB*k*G skA*skBAB
“half signature” without k

but still with respect to
rA*rB*k*G

Lo
ck

 P
ro

to
co

l

AB AB

(skA, rA) (skB, rB)
C=k*G, transaction

“1/3” signature σR,B

“1/3” signature σR,A

…

 23

ECDSA-based Scriptless Lock
x

R = r * G

σR = sign(r, sk, transaction)

secret key messagesecret
randomness

shared signature using a
shared key and randomness

rA*rBrA*rB*G skA*skBAB

embedding of random share
(condition) k

rA*rB*k*G rA*rB*k skA*skBAB

Signature w.r.t.
a (public)

random elliptic
curve point R

rA*rBrA*rB*k*G skA*skBAB
“half signature” without k

but still with respect to
rA*rB*k*G

Lo
ck

 P
ro

to
co

l

AB AB

(skA, rA) (skB, rB)
C=k*G, transaction

“1/3” signature σR,B

“1/3” signature σR,A

…

Hard for ECDSA as σR

has a non-linear
structure

 24

Properties/Evaluation

‣ Security and Privacy proven in the UC Framework

‣ Compatible with Bitcoin and current PCNs

✓Implemented in the Lightning Network  
(https://github.com/cfromknecht/tpec)

‣ Reduces transaction size for conditional payments

✓Encoding of condition within signature

‣ Makes settlement transactions indistinguishable from
regular ones (Fungibility)

‣ Little overhead:

✓< 500 bytes communication

✓ few ms computation

Alice ?? Bob AB⤳

AB ?k⤳

‣ AMHLs are suitable for cross-currency usage 
 - even with different primitive instantiations

✓ Inter-currency payment channels

✓ Atomic swaps

 25

Interoperability

EC
DSA

DLOG

 26

Summary

The Wormhole Attack:  
A novel attack on Payment
Channel Network Security

Concrete constructions of AMHLs that

… got implemented in Bitcoin’s
Lightning Network

… enable inter-blockchain
Payment Channels

… are efficient

AMHLs: A new primitive for
secure + anonymous Payment

Channel Networks

 27

Additional Material

HTLC in practice

Blockchain

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
Alice

Alice Bob

x

≤≤

Transaction can only be added
1) Before the expiration of the payment channel
2) Before the expiration of the HTLC
3) when providing the pre-image x

HTLC (Alice, Bob, 1, y,):
Alice pays Bob 1 BTC iff Bob shows some

x such that H(x) = y before

 29

Implications of the Wormhole Attack

‣ Collateral cost: Honest intermediaries’ coins are
locked (cannot be used in a successful payment) 
 

‣ Attacked intermediaries cannot distinguish between
an attack and a failed payment 
 

➡ Destroys the incentive for intermediaries to
participate in multi-hop payments at all

B

B

??
⛔

 30

Properties of Multi-hop-lock-based PCN

Atomicity Relationship
AnonymityConsistency

Balance Security
Prevents Wormhole

Attacks (limited) Privacy

Minimal requirements 
which (cryptographic)

constructs are needed for
implementing the Locks

Communication
Which amount of
communication is

required for building
payment paths from locks

Blockchain Effects
How do the locks

influence the
transactions visible on

the Blockchain

Compatibility +
Interoperability Performance

Fungibility +
Blockchain growth

Current
PCN

OWH-based
PCN

Schnorr-based
PCN

ECDSA-based
PCN

Atomicity ✔ ✔ ✔ ✔

Consistency ❌ ✔ ✔ ✔

Privacy ❌ ✔ ✔ ✔

Compatibility/
Interoperability ❌ partly partly ✔

Fungibility +
reduced

transaction size
❌ ❌ ✔ ✔

 31

Properties of the Different Constructions

 32

Scriptless Locks

Schnorr Signature ECDSA Signature

r + sk ⇤m

(rA + rB) + (skA + skB) ⇤m
Rx ⇤ skA ⇤ skB +m

rA ⇤ rB

m

Signature of shared key and randomness

Embedding of arbitrary random shares (conditions)

signature with respect to
message m and (random)
point (Rx,Ry) on a elliptic

curve

simple linear
combination of additive
key and random shares

complex combination
(x-coordinate,

multiplicative shares,
inverse)

(Rx, Ry) = r ⇤G

= (rA + rB) ⇤G = (rA ⇤ rB) ⇤G

= (rA + rB + k) ⇤G = (rA ⇤ rB ⇤ k) ⇤G

(rA + rB + k) + (skA + skB) ⇤m
Rx ⇤ skA ⇤ skB +m

rA ⇤ rB ⇤ k

Rx ⇤ sk+m

r

�(rA⇤rB⇤k)⇤G
skA⇤skB

(m, rA ⇤ rB ⇤ k)

ECDSA-based Lock

Alice Bob

pkAB pkAB

joint randomness generation
rA, RB = rB*G rB, RA = rA*G

R = (Rx,Ry) = rA*rB*C R= (Rx,Ry) = rA*rB*C

m m

AB

(skAB, pkAB) =
(skA * skB, skA * skB *G)

skA skBskA

Alice

σpk_AB/{k,r0}

Alice

σpk_AB/{k,r0}

Alice Alice

:=

requires skA and hence
can only be performed
under homomorphic
encryption for Alice

�/{k,rA}
�/{k,rA}

�/{k} :=

= rA*rB*k*G

For condition C = k*G compute signature s. t. a�/{k} �/{k}

k
= �rA⇤rB⇤C

skAB
(m, rA ⇤ rB ⇤ k)

�R
skAB

(m, rB)

�/{k,rA}

rA
�/{k}

= �R
skAB

(m, rA ⇤ rB)

ECDSA-based Lock

Alice Bob

pkAB pkAB

joint randomness generation
rA, RB = rB*G rB, RA = rA*G

R = (Rx,Ry) = rA*rB*C R= (Rx,Ry) = rA*rB*C

m m

AB

(skAB, pkAB) =
(skA * skB, skA * skB *G)

skA skBskA

Alice

σpk_AB/{k,r0}

Alice

σpk_AB/{k,r0}

Alice Alice

:=

requires skA and hence
can only be performed
under homomorphic
encryption for Alice

�/{k,rA}
�/{k,rA}

�/{k} :=

Alice’s key share is
homomorphically encrypted

for Alice

= rA*rB*k*G

For condition C = k*G compute signature s. t. a�/{k} �/{k}

k
= �rA⇤rB⇤C

skAB
(m, rA ⇤ rB ⇤ k)

�R
skAB

(m, rB)

�/{k,rA}

rA
�/{k}

= �R
skAB

(m, rA ⇤ rB)

