
Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks

Michael Rodler 1, Wenting Li 2, Ghassan O. Karame 2, Lucas Davi 1

1 University of Duisburg-Essen
2 NEC Laboratories Europe

26th Network and Distributed
System Security Symposium (NDSS19)

The DAO Hack
17 June 2016

3.6 Million Ether Stolen

worth $50 Million
5% of all available Ether

2

Ethereum Classic ETCEthereum ETH

The DAO Aftermath

3

Hard-Fork

Ξ

splitDAO(…)

The DAO Attack

Check Attacker Balance

Update Attacker Balance

Balance: 1000
Attacker Balance: 100

Balance: 0
The DAO

Child DAO Attacker

1009008000

1000200100

4

Transfer Amount

Withdraw to Child DAO

Ξ

Re-Entrancy

Vulnerability

Can we automatically detect
re-entrancy vulnerabilities?

5

Static analysis

Verification

Runtime CheckingSymbolic execution

Prior Research on
Bug Finding and Exploitation in Smart Contracts

Oyente
[Luu et al., CCS16]

Securify
[Tsankov et al., CCS18]

ECFChecker
[Grossman et al., POPL18]

TeEther
[Krupp+Rossow, USENIX SEC 18]

MAIAN
[Nikolic et al., ACSAC18]

ZEUS
[Kalra et al., NDSS18]

OSIRIS
[Torres et al., ACSAC18]

Manticore
(Trail of Bits)

Mythril
(ConsenSys)

6 Detects Re-Entrancy

SmartCheck
[Tikhomirov et al., CCS18]

Current Bug Finding Tools

7

Do not analyze
combination of

contracts
Many false
positives

No protection of deployed contracts

Cover many vulnerability types

1. Do existing tools cover all re-entrancy bugs?
2. Can we protect deployed contracts?

Our Research Questions:

8

Runtime detection of re-entrancy attacks

Taint tracking engine for EVM bytecode

Our Contributions

Overlooked re-entrancy attack patterns

Sereum – Hardened Ethereum Client

Investigation of root causes for false positives

9

Overlooked re-entrancy problems

10

Attack 1: Cross-Function Re-Entrancy

A
Malicious

B

Victim Contract Attacker Contract

11

Attack 2: Delegated Re-Entrancy

A
Malicious

B

DELEGATECALL

Victim Contract Attacker Contract

Library Contract
12

Attack 3: Create-Based Re-Entrancy

A
Malicious

Constructor

CREATE

Newly Created Contract

Victim Contract Attacker Contract

13

Overview on Re-Entrancy Detection
Tool Same-

Function
Cross-
Function

Delegated Create-based

Oyente
[Luu et al., CCS16]

Securify
[Tsankov et al., CCS18]

* *

ECFChecker
[Grossman et al., POPL18]

Manticore
(Trail of Bits)

Mythril
(ConsenSys)

* *

14 * Conservative policy with high number of false positives

Sereum

Main Observation

Typically re-entrancy attacks exploit
inconsistent state

at the time the vulnerable contract
decides whether to take a branch

15

function withdraw(uint amount)

Sereum Approach

16

if (balance[msg.sender] >= amount)

msg.sender.call.value(amount)("");
balance[msg.sender] -= amount;

return;

F T

Mark variables that
influence branching
decisions as critical

Prevent further
updates with write-

locks

Sereum Architecture
Ethereum Virtual Machine (EVM)
go-ethereum

Transaction
Manager

Taint Engine

Sereum

Bytecode
Interpreter

Attack Detector

Enforcement:
Transaction roll-back
on detected attack

17

AttackerVictim

Check Balance

Transfer Ether

Attacker Victim
(re-entered)

Re-enterA

A

A

Write-lock
“attacker balance”

at 0x12345…

18

Check Balance

Transfer Ether

CALL(…,0xA,…)

x = SLOAD(0x12345…)
cond = LT(x, …)
JUMPI(0x140, cond)

Update Balance

Update Balance

SSTORE(0x12345…, …)

Alert:
Write to locked

variable

Mark
“attacker balance”

at 0x12345...
as critical variable.

Return
STOP

Sereum
Write Locks

UnlockedLocked0x12345…

Evaluation Results

19

Evaluation on first
4.5 Million Ethereum blocks

Successful detection
of The DAO incident

~50k flagged
transactions

~2k true attack
transactions

Developers hacked their
own contract

7 days before The DAO
incident

New Finding:
The curios case of

DSEthToken

Manual reverse-
engineering and

analysis of flagged
transactions 14 distinct contracts

result in false positive

FP rate:

0.06%

Questions?

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks
Michael Rodler 1, Wenting Li 2, Ghassan O. Karame 2, Lucas Davi 1

1 University Duisburg-Essen
2 NEC Laboratories Germany

github.com/uni-due-syssec/eth-reentrancy-attack-patterns @f0rki

https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
https://twitter.com/f0rki

Backup Slides

Sereum Performance
­ Benchmark: Execute 50 Blocks in Batch (10 000 repetitions)

­ Sereum – mean 2494.5 ms (σ = 174.8 ms)

­ Geth – mean 2277.0 ms (σ = 146.7 ms)
­ Mean overhead: 9.6 %

­ Average memory consumption: geth 9252MB, Sereum 9767MB

­ Timings on newer blocks (around block ~6 700 000)
­ Average 5 sec to process block with Sereum (about 150 TX)
­ New block every ~15 sec

­ Sereum can keep up with network!

22

Evaluation of Sereum
1. We verified that Sereum successfully detects the new attack patterns
2. Evaluation on the Ethereum blockchain

­ We re-executed all blocks up until block number 4 500 000
(77 987 922 transactions)

­ We detected attacks related to “the DAO”
­ Sereum flagged 49 080 transactions as re-entrancy attacks

3. We manually reverse-engineered and analyzed detected contracts/attacks
­ We identified 2 337 true attack transactions
­ Sereum has an overall false positive rate as low as 0.06%
­ We identified 5 major classes of root-causes of false positives

(see details in the paper)
23

False Positive Causes
I. Lack of field-sensitivity on the EVM level

­ Small types packed densely into one storage address

II. Storage Deallocation
­ Deallocation: overwrite with zero

III. Constructor Callbacks
­ Instead of passing data as argument, retrieved

IV. Tight Contract Coupling
­ Contract execution passes between two or more contracts

V. Manual Re-Entrancy Locking
­ Manual locking is identical to malicious re-entrancy pattern

Sereum Usage
­ Detection mode

­ Developer continuously runs Sereum
­ Re-play all public Ethereum transactions, looking for attacks
­ Developer reacts to attacks

­ Enforcement mode
­ Integrate Sereum into all Ethereum clients
­ For example: private blockchain based on Ethereum

25

References
­ L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart Contracts

Smarter”, ACM CSS 2016
­ P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev, “Securify:

Practical Security Analysis of Smart Contracts”, ACM CCS 2018
­ S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing Safety of Smart

Contracts”, NDSS 2018
­ J. Krupp and C. Rossow, “TeEther: Gnawing at Ethereum to Automatically Exploit

Smart Contracts,” USENIX Security 2018
­ I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The Greedy,

Prodigal, and Suicidal Contracts at Scale”, ACSAC 2018
­ S. Grossman et al., “Online Detection of Effectively Callback Free Objects with

Applications to Smart Contracts”, POPL 2018.
­ S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y.

Alexandrov, “SmartCheck: Static Analysis of Ethereum Smart Contracts,” 2018.

26

