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The DAO Hack
17 June 2016

3.6 Million Ether Stolen

worth $50 Million
5% of all available Ether
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Ethereum Classic ETCEthereum ETH

The DAO Aftermath
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Can we automatically detect
re-entrancy vulnerabilities?
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Static analysis

Verification

Runtime CheckingSymbolic execution

Prior Research on
Bug Finding and Exploitation in Smart Contracts

Oyente
[Luu et al., CCS16]

Securify
[Tsankov et al., CCS18]

ECFChecker
[Grossman et al., POPL18]

TeEther
[Krupp+Rossow, USENIX SEC 18]

MAIAN
[Nikolic et al., ACSAC18]

ZEUS
[Kalra et al., NDSS18]

OSIRIS
[Torres et al., ACSAC18]

Manticore
(Trail of Bits)

Mythril
(ConsenSys)

6 Detects Re-Entrancy

SmartCheck
[Tikhomirov et al., CCS18]



Current Bug Finding Tools
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Do not analyze
combination of

contracts
Many false
positives

No protection of deployed contracts

Cover many vulnerability types



1. Do existing tools cover all re-entrancy bugs?
2. Can we protect deployed contracts?

Our Research Questions:
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Runtime detection of re-entrancy attacks

Taint tracking engine for EVM bytecode

Our Contributions

Overlooked re-entrancy attack patterns

Sereum – Hardened Ethereum Client

Investigation of root causes for false positives
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Overlooked re-entrancy problems
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Attack 1: Cross-Function Re-Entrancy

A
Malicious

B

Victim Contract Attacker Contract
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Attack 2: Delegated Re-Entrancy

A
Malicious

B

DELEGATECALL

Victim Contract Attacker Contract

Library Contract
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Attack 3: Create-Based Re-Entrancy

A
Malicious

Constructor

CREATE

Newly Created Contract

Victim Contract Attacker Contract
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Overview on Re-Entrancy Detection
Tool Same-

Function
Cross-
Function

Delegated Create-based

Oyente
[Luu et al., CCS16]

Securify
[Tsankov et al., CCS18]

* *

ECFChecker
[Grossman et al., POPL18]

Manticore
(Trail of Bits)

Mythril
(ConsenSys)

* *

14 * Conservative policy with high number of false positives

Sereum



Main Observation

Typically re-entrancy attacks exploit 
inconsistent state

at the time the vulnerable contract 
decides whether to take a branch
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function withdraw(uint amount)

Sereum Approach
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if (balance[msg.sender] >= amount)

msg.sender.call.value(amount)("");
balance[msg.sender] -= amount;

return;

F T

Mark variables that 
influence branching 
decisions as critical

Prevent further 
updates with write-

locks



Sereum Architecture
Ethereum Virtual Machine (EVM)
go-ethereum

Transaction 
Manager

Taint Engine

Sereum

Bytecode 
Interpreter

Attack Detector

Enforcement:
Transaction roll-back 
on detected attack
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AttackerVictim

Check Balance

Transfer Ether

Attacker Victim
(re-entered)

Re-enterA

A

A

Write-lock 
“attacker balance”

at 0x12345…
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Check Balance

Transfer Ether

CALL(…,0xA,…)

x = SLOAD(0x12345…)
cond = LT(x, …)
JUMPI(0x140, cond)

Update Balance

Update Balance

SSTORE(0x12345…, …)

Alert:
Write to locked 

variable

Mark 
“attacker balance” 

at 0x12345... 
as critical variable.

Return
STOP

Sereum
Write Locks

UnlockedLocked0x12345…



Evaluation Results
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Evaluation on first 
4.5 Million Ethereum blocks

Successful detection 
of The DAO incident

~50k flagged 
transactions

~2k true attack
transactions

Developers hacked their
own contract

7 days before The DAO 
incident

New Finding: 
The curios case of 

DSEthToken

Manual reverse-
engineering and 

analysis of flagged 
transactions 14 distinct contracts 

result in false positive

FP rate:

0.06%



Questions?

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks
Michael Rodler 1, Wenting Li 2, Ghassan O. Karame 2, Lucas Davi 1

1 University Duisburg-Essen
2 NEC Laboratories Germany

github.com/uni-due-syssec/eth-reentrancy-attack-patterns @f0rki

https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
https://twitter.com/f0rki
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Sereum Performance
­ Benchmark: Execute 50 Blocks in Batch (10 000 repetitions)

­ Sereum – mean 2494.5 ms (σ = 174.8 ms)

­ Geth – mean 2277.0 ms (σ = 146.7 ms)
­ Mean overhead: 9.6 %

­ Average memory consumption: geth 9252MB, Sereum 9767MB

­ Timings on newer blocks (around block ~6 700 000)
­ Average 5 sec to process block with Sereum (about 150 TX)
­ New block every ~15 sec

­ Sereum can keep up with network!
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Evaluation of Sereum
1. We verified that Sereum successfully detects the new attack patterns
2. Evaluation on the Ethereum blockchain

­ We re-executed all blocks up until block number 4 500 000 
(77 987 922 transactions)

­ We detected attacks related to “the DAO”
­ Sereum flagged 49 080 transactions as re-entrancy attacks

3. We manually reverse-engineered and analyzed detected contracts/attacks
­ We identified 2 337 true attack transactions
­ Sereum has an overall false positive rate as low as 0.06%
­ We identified 5 major classes of root-causes of false positives

(see details in the paper)
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False Positive Causes
I. Lack of field-sensitivity on the EVM level

­ Small types packed densely into one storage address

II. Storage Deallocation
­ Deallocation: overwrite with zero

III. Constructor Callbacks
­ Instead of passing data as argument, retrieved

IV. Tight Contract Coupling
­ Contract execution passes between two or more contracts

V. Manual Re-Entrancy Locking
­ Manual locking is identical to malicious re-entrancy pattern



Sereum Usage
­ Detection mode

­ Developer continuously runs Sereum
­ Re-play all public Ethereum transactions, looking for attacks
­ Developer reacts to attacks

­ Enforcement mode
­ Integrate Sereum into all Ethereum clients
­ For example: private blockchain based on Ethereum
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