

Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems

Hadi Abdullah, Washington Garcia, Christian Peeters, Patrick Traynor, Kevin R.B. Butler, and Joseph Wilson

Voice as an Interface

Florida Institute for Cybersecurity Research

Injecting Commands

Injecting Commands (Demonstration)

• Easy to Defend?

Is there a **generic**, **transferrable** way to produce audio that:

- sounds like noise to humans,
- sounds like a valid command to the system?
- works against both speech and speaker recognition systems
- with **Black-Box** access to target system

Modern Speech Recognition Systems

Feature Extraction

How the Attack Works

Demo

- N. Carlini and D. Wagner, "Audio Adversarial Examples: Targeted Attacks on Speech-to-Text," IEEE Deep Learning and Security Workshop, 2018
- N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and W. Zhou, "Hidden voice commands." in USENIX Security Symposium, 2016
- X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang, and C. A. Gunter, "Commandersong: A systematic approach for practical adversarial voice recognition," in Proceedings of the USENIX Security Symposium, 2018.
- M. Alzantot, B. Balaji, and M. Srivastava, "Did you hear that? Adversarial examples against automatic speech recognition," NIPS 2017 Machine Deception Workshop

Modern Speech Recognition Systems

Feature Extraction

How the Attack Works

Demo

- Designed to approximate the human ear
- Retains the most important features
- Magnitude Fast Fourier Transform (mFFT)

- Converts time domain to frequency domain
- Multiple Inputs can have same output
- mFFT is lossy

Modern Speech Recognition Systems

Feature Extraction

How the Attack Works

Demo

How the Attack Works (Psychoacoustics)

- Intelligibility hard to measure
- Fundamentals of **psychoacoustics**
- Spread energy across spectrum

UF

	Speech	Speaker
Task	Noise -> text	Noise -> user
Data	> 20,000 successful attack samples	22 speakers
Queries	<10 queries to model (a few seconds!)	
Models	KALDI IBM intel HOUNDIFY HOUNDIFY CMU Sphinx intel CMU Sphinx intel CMU Sphinx	Microsoft Azure x2

Modern Speech Recognition Systems Feature Extraction

How the Attack Works

Demo! (1/2)

More at: https://sites.google.com/view/practicalhiddenvoice/home

Demo! (2/2)

More at: https://sites.google.com/view/practicalhiddenvoice/home

Demo! (2/2)

More at:

https://sites.google.com/view/practicalhiddenvoice/home

Modern Speech Recognition Systems Feature Extraction How the Attack Works

Demo

- Simple, efficient audio transformations yield "noise" that is understood as commands by speech systems
- The model is irrelevant
- <u>All systems we tested are vulnerable</u>
- Achieve the same goals as traditional Adversarial ML

Project webpage:

sites.google.com/view/practicalhiddenvoice/home

hadi10102@ufl.edu hadiabdullah.github.io in hadiabdullah1

- Easy to get around
- Artificially generate a target's speech
 LyreBird
- Capture and stitch together target's speech

- Must be implemented at or before feature extraction
- Adversarial Training?
- Voice Activity Detection?
- Environmental Noise
- Liveness Detection
 - Blue et al.*

*

L. Blue, L. Vargas, and P. Traynor, "Hello, is it me you're looking for? Differentiating between human and electronic speakers for voice interface security," in 11th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2018.