
rORAM: Efficient Range ORAM with Locality

Anrin Chakraborti, Radu Sion
Stony Brook University

Adam Aviv, Seung Geol Choi, Travis
Mayberry, Daniel Roche

United States Naval Academy

Its all about the Clouds!

2/22

Protecting Outsourced Data

Read (i)

Write (k)

• Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. Islam et al. NDSS, ‘12

• Connecting the Dots: Privacy Leakage via Write-Access
Patterns to the Main Memory. John et al. HOST, ’17

• …
3/22

Oblivious RAM (ORAM)

Read (#$%)

Write (!@#)

Read ($$%#)

Observing the physical memory accesses, an adversary cannot learn
1. Which item has been accessed.
2. What operation has been performed.

Read (i)

4/22

Path ORAM [Stefanov et al. CCS ‘13]

V0 V1 V2 V3

STASH

CLIENT SERVER

LogicalBlockID LeafLabel
0 v2

1 v0

2 v3

… …

Position Map

5/22

Path ORAM Evictions

V0 V1 V2 V3

STASH

LogicalBlockID LeafLabel
0 v2

1 v0

2
… …

Position Map

SERVERCLIENT

v3v0

Can also evict along pre-determined paths

6/22

Path ORAM: Performance Metrics
Bandwidth: !(log &), worst-case

Round-trips: 1 RT per access

Computational complexity: trivial

Locality of Access:
• # of seeks: !(log &)
• Access seq. chunk: !(()*+,-./0 ∗ 2345)

7/22

Why Locality of Access?
o HDD: 1 seek = 10,000x slower
o SSD: Random placement ⟹ Significant wear
o File systems

• caching, prefetching require data locality
o Applications with range queries e.g., GIS

8/22

Locality-Privacy Tradeoff

No

Data locality for “free”?

What can we afford to leak?
Sequential access size?

[Asharov ‘17]

Why is this acceptable?

9/22

Range ORAM: Locality-Optimized Range Queries
Range ORAM [Asharov et al. ‘17]:

For range query of size r
ü ! log3& seeks
ü ! r. log3& bandwidth required

rORAM:
ü ! log& x fewer seeks
ü ! log& x lower bandwidth required

10/22

rORAM
• ! ∈ #(log() independent ORAMs
• Data is duplicated

Seek-optimized for querying ranges of size 2l

• For Rl:
• # of seeks for reading (r= 2l) blocks in range: O(logN) ind. of r
• # of seeks for evicting (r=2l) blocks: O(logN) ind. of r

11/22

Insight 1: Locality-Optimized Layout

Observation: Eviction Path Selection is Deterministic
⟹ Paths for consecutive evictions known apriori
⟹ Order in which nodes are accessed per level known apriori
⟹ Perform evictions level-wise

Problem: Evicting r blocks requires O(r*logN) seeks

V0 V1 Vn-2

Eviction Path Selection Order

V0

V1

Vn-1 Vn/2

Vn-1

.
Vn/2

.

.

.

.

.

.
.
.
.

.

.

.

12/22

Batching Evictions Example

Level 1

Level 2

Level logN

0x1ff2…. 0x2ac4…. 0xfbb3….

DISK

LOGICAL VIEW

Stash

Client Server

V0 V1

Vn/2 Vn-1

BatchEvict to V0,Vn/2

Batch r evictions: O(log N) seeks

.

Vn

.

.

.

.

.

.

13/22

Problem: Reading r blocks in range requires O(r*logN) seeks

Insight 2: Locality-Optimized Re-Mapping

Idea: Any r consecutive eviction paths can be read with O(logN) seeks

Map Blocks in Range to Consecutive Eviction Paths

Eviction Path Selection Order

V0

V1

Vn-1

.

.

Vj

LogicalBlockID LeafLabel
a vj

a+1 …

… …

a+r-1 vk

Position Map

VK

.

.

r labels

Remap: [a, a+1, …, a+r-1]

ReadRange [a, b], b=a+r-1: O(logN) seeks

Vn/2
.

..

.

.

.

.

.

14/22

Access Protocol

!""#$$[&, (]

ReadRange [2,5]BatchEvict [2,5] BatchEvict [2,5] BatchEvict [2,5] BatchEvict [2,5]

#	of	Seeks	:
• 2(4567) disk seeks for ReadRange from R2
• 2 4567 disk seeks for BatchEvict to Ri - 2 45627 seeks in total

15/22

Insight 3: Distributed Position Map
Evict [2,5]Evict [2,5] Evict [2,5] Evict [2,5]

How do we know where block 2 is in R0, R1, …?
• ! log% position map accesses

Pointer-based Oblivious Data Structure
• With each block, store pointers to its location in other ORAMs
• Locate position for “free” with reads

Insight: Reuse paths in ORAMs R0, R1, .. Rl

16/22

Asymptotic Performance
!""#$$[&, & +) − +]:

Seeks Bandwidth Server Space Leakage
PathORAM O(r.log2N) O(r.log2N) O(N) none
rORAM O(log2N) O(r.log2N) O(NlogN) Range size
Asharov et al. O(log3N) O(r.log3N) O(NlogN) Range size
Demertzis et al. O(r) O(r.N1/3.log2N) O(N) none

ü -(/012)x fewer seeks
ü -(/012)x lower bandwidth required

17/22

Query Access Time

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Q
ue

ry
 A

cc
es

s
Ti

m
e

(y
*2

x
se

co
nd

s)

Range Size (2x Blocks)

rORAM
PathORAM

Batched Eviction

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Q
ue

ry
 A

cc
es

s
Ti

m
e

(y
*2

x s
ec

on
ds

)

Range Size (2x Blocks)

rORAM
PathORAM

Batched Eviction

30 – 50x speedup, range size >= 32 blocks 10x speedup, range size >= 64 blocks

Local HDD
(logscale, higher is better)

Network Block Device
(logscale, higher is better)

18/22

Throughput

 0

 2

 4

 6

 8

 10

SeqRead FileServer VideoServer

T
h
ro

u
g
h
p
u
t
(Q

u
e
ri
e
s/

se
c)

Benchmark

Path ORAM
Batched Evictions

rORAM

File Server = 5x, Video Server = 11x

Local HDD
(higher is better)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SeqRead FileServer VideoServer

T
h
ro

u
g
h
p
u
t
(Q

u
e
ri
e
s/

se
c)

Benchmark

Path ORAM
Batched Evictions

rORAM

File Server = 2x, Video Server = 4x

Network Block Device
(higher is better)

19/22

Summary
Practical Range ORAM

ü ! log% x fewer seeks
ü ! log% x lower bandwidth required

Optimized for Real World Applications

Can we do better?
app-specific optimizations

20/22

What I am working on

Oblivious RAM [NDSS ’19, ‘19]

Integrity-Preserving Block Storage [ApSys ‘17]

Secure CPU Architecture & Secure
Virtualization

History Independence [TIFS ’15]

Query Authentication [TKDE]

I am on the job market!

Plausible Deniability [PETS ‘17, ‘19]

21/22

Thank you!!

22/22

