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Its all about the Clouds!
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Protecting Outsourced Data

Read (i)

Write (k)

• Access pattern disclosure on searchable encryption: 
Ramification, attack and mitigation.  Islam et al. NDSS, ‘12

• Connecting the Dots: Privacy Leakage via Write-Access 
Patterns to the Main Memory. John et al. HOST, ’17

• …
3/22



Oblivious RAM (ORAM)

Read (#$%)

Write (!@#)

Read ($$%#)

Observing the physical memory accesses, an adversary cannot learn
1. Which item has been accessed.
2. What operation has been performed.

Read (i)
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Path ORAM [Stefanov et al. CCS ‘13] 
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Path ORAM Evictions 
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Can also evict along pre-determined paths
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Path ORAM: Performance Metrics
Bandwidth: !(log &), worst-case

Round-trips: 1 RT per access

Computational complexity:  trivial

Locality of Access: 
• # of seeks: !(log &)
• Access seq. chunk: !(()*+,-./0 ∗ 2345)
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Why Locality of Access?
o HDD: 1 seek = 10,000x slower 
o SSD: Random placement ⟹ Significant wear
o File systems 

• caching, prefetching require data locality
o Applications with range queries e.g., GIS
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Locality-Privacy Tradeoff

No

Data locality for “free”?

What can we afford to leak?
Sequential access size? 

[Asharov ‘17]

Why is this acceptable?
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Range ORAM: Locality-Optimized Range Queries
Range ORAM [Asharov et al. ‘17]:

For range query of size r
ü ! log3& seeks
ü ! r. log3& bandwidth required

rORAM:
ü ! log& x fewer seeks
ü ! log& x lower bandwidth required
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rORAM
• ! ∈ #(log() independent ORAMs
• Data is duplicated

Seek-optimized for querying ranges of size 2l

• For Rl:
• # of seeks for reading (r= 2l) blocks in range: O(logN) ind. of r
• # of seeks for evicting (r=2l ) blocks: O(logN) ind. of r
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Insight 1: Locality-Optimized Layout

Observation: Eviction Path Selection is Deterministic
⟹ Paths for consecutive evictions known apriori
⟹ Order in which nodes are accessed per level known apriori
⟹ Perform evictions level-wise

Problem: Evicting r blocks requires O(r*logN) seeks
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Batching Evictions Example

Level 1

Level 2

Level logN

0x1ff2…. 0x2ac4…. 0xfbb3….

DISK

LOGICAL VIEW
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Client Server
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BatchEvict to V0,Vn/2

Batch r evictions: O(log N) seeks
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Problem: Reading r blocks in range requires O(r*logN) seeks

Insight 2: Locality-Optimized Re-Mapping

Idea: Any r consecutive eviction paths can be read with O(logN) seeks

Map Blocks in Range to Consecutive Eviction Paths

Eviction Path Selection Order
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Position Map
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Remap: [a, a+1, …, a+r-1]

ReadRange [a, b], b=a+r-1: O(logN) seeks 
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Access Protocol

!""#$$[&, (]

ReadRange [2,5]BatchEvict [2,5] BatchEvict [2,5] BatchEvict [2,5] BatchEvict [2,5]

#	of	Seeks	:
• 2(4567) disk seeks for ReadRange from R2
• 2 4567 disk seeks for BatchEvict to Ri - 2 45627 seeks in total 
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Insight 3: Distributed Position Map
Evict [2,5]Evict [2,5] Evict [2,5] Evict [2,5]

How do we know where block 2 is in R0, R1, …?
• ! log% position map accesses

Pointer-based Oblivious Data Structure
• With  each block, store pointers to its location in other ORAMs
• Locate position for “free” with reads

Insight: Reuse paths in ORAMs R0, R1, .. Rl
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Asymptotic Performance
!""#$$[&, & + ) − +]:

Seeks Bandwidth Server Space Leakage
PathORAM O(r.log2N) O(r.log2N) O(N) none
rORAM O(log2N) O(r.log2N) O(NlogN) Range size
Asharov et al. O(log3N) O(r.log3N) O(NlogN) Range size
Demertzis et al. O(r) O(r.N1/3.log2N) O(N) none

ü -(/012)x fewer seeks
ü -(/012)x lower bandwidth required
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Query Access Time
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Throughput
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Summary
Practical Range ORAM

ü ! log% x fewer seeks
ü ! log% x lower bandwidth required

Optimized for Real World Applications

Can we do better? 
app-specific optimizations
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What I am working on

Oblivious RAM [NDSS ’19, ‘19]

Integrity-Preserving Block Storage [ApSys ‘17]  

Secure CPU Architecture & Secure 
Virtualization

History Independence [TIFS ’15]

Query Authentication [TKDE] 

I am on the job market!

Plausible Deniability [PETS ‘17, ‘19]
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Thank you!! 
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