

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

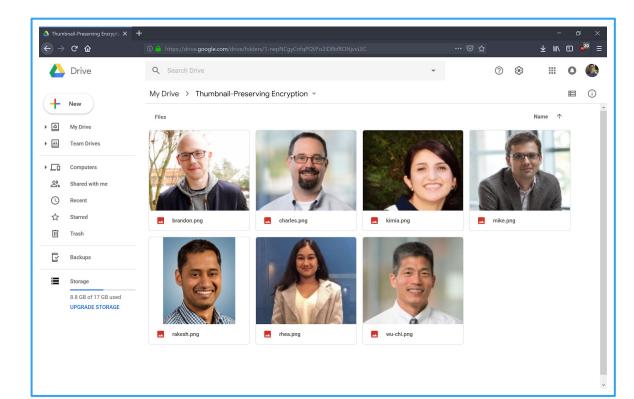
Kimia Tajik*, Akshith Gunasekaran*, Rhea Dutta†§, Brandon Ellis*, Rakesh Bobba*, Mike Rosulek*, Charles Wright‡, Wu-chi Feng‡

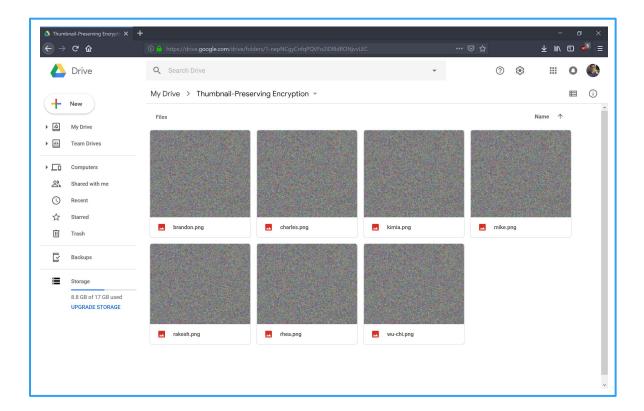
*Oregon State University, †Cornell University, ‡Portland State University

§Rhea Dutta worked on this paper while interning at Oregon State University

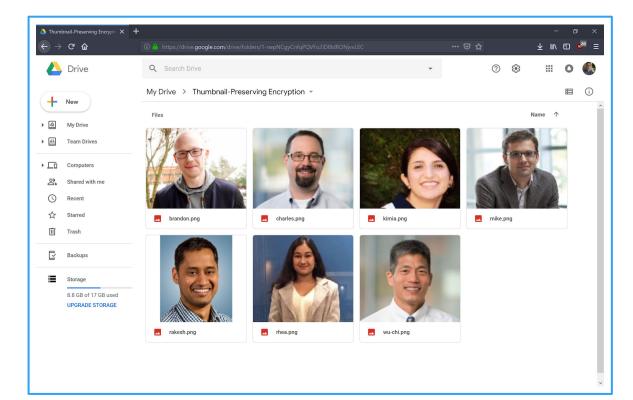
Problem Statement

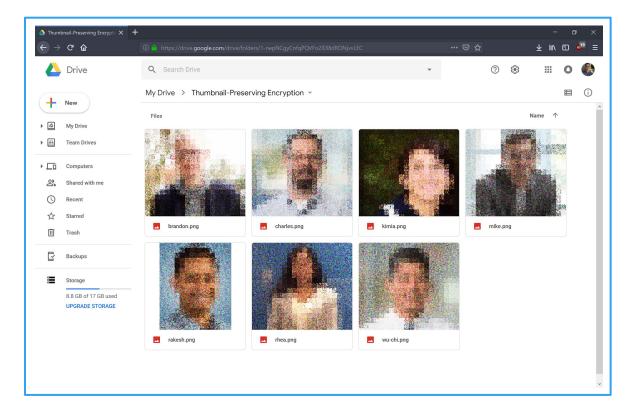
- Ubiquity of cheap high-resolution digital cameras
- Need for online photo storage services
- Exposure to data breaches :(
- We need privacy!




One Solution: Encryption

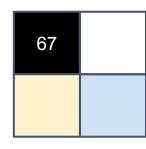
Leaks no information (Not usable)


One Solution: Encryption



Encryption

Another Solution: Thumbnail-Preserving Encryption

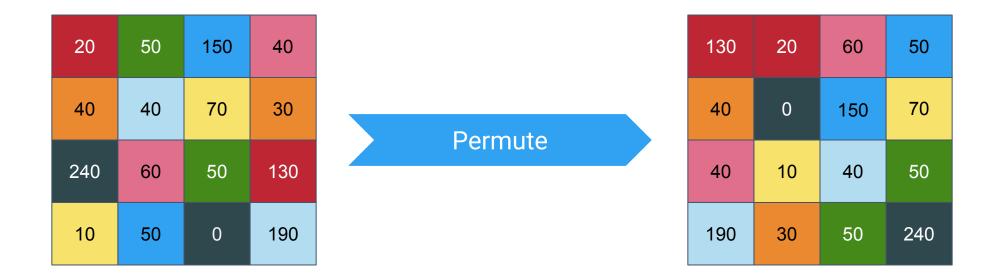


Thumbnail-Preserving Encryption

What is a Thumbnail?

0	140	10	60		
60	200	30	30		
160	90	10	100		
50	20	150	60		

Image


| Thumbnail

Thumbnail-Preserving Encryption

Leaks the thumbnail (Thus, more usable)

Previous Thumbnail-Preserving Encryption

Leaks the actual values of pixels :(

* Charles V. Wright, Wu-chi Feng, and Feng Liu. Thumbnail-preserving encryption for jpeg. In *Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security*, MMSec '15, pages 141–146, New York, NY, USA, 2015. ACM.

Our Contribution: Ideal Thumbnail-Preserving Encryption

- A new thumbnail-preserving encryption algorithm is proposed, in which the pixel intensities are mixed in a block such that:
 - Their sum is preserved.
 - Nothing else is leaked.
- Security analysis is done to prove the above claim.
- User study is conducted to analyze the trade-off between usability and privacy.

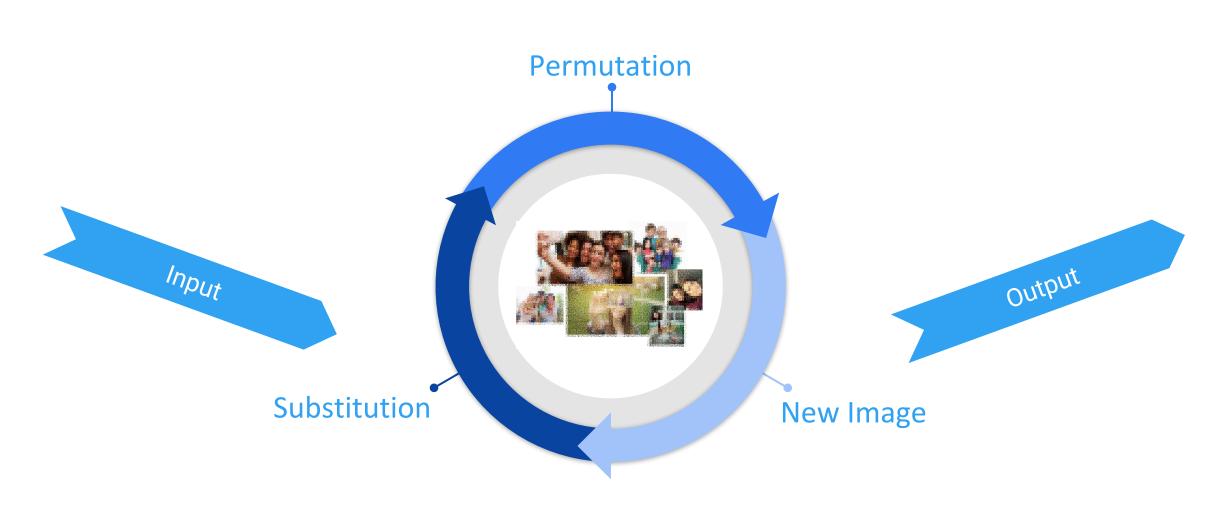
Ideal Thumbnail-Preserving Encryption

- ► Two-steps:
 - Neighborhood-based substitutions
 - Block-based permutations

Neighborhood-Based Substitution

20	50	150	40
40	40	70	30
240	60	50	130
10	50	0	190

Substitute


10	60	140	50
20	60	10	90
100	200	30	150
60	0	30	160

Block-Based Permutation

10	60	140	50
20	60	10	90
100	200	30	150
60	0	30	160

0	140	10	60
60	200	30	30
160	90	10	100
50	20	150	60

Encryption Rounds

Security Analysis

- Claim: With enough rounds, ciphertext is random image with same thumbnail as plaintext.
- The encryption algorithm is modeled with a Markov chain.
- The number of iterations until output looks random is related to the mixing time of the chain.
- The bound on mixing time is analyzed (so is the number of required iterations).

Usability Privacy Trade-Off Analysis

Usability

Privacy

Identify Image from Description

- Prompt:
 - Pick an image that matches the description.
- Description:
 - Monica is introducing her dollhouse.

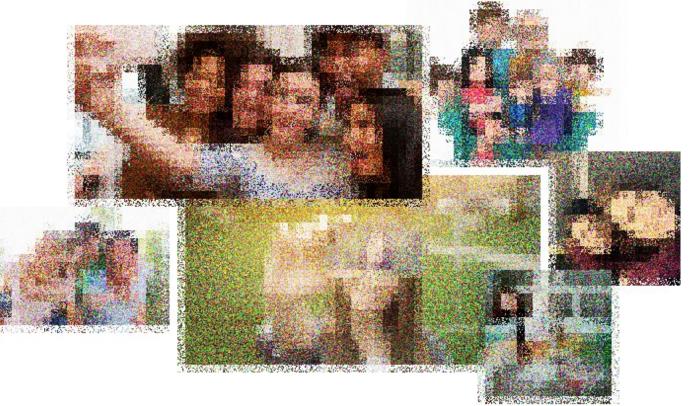
Thumbnail

High-resolution

Usability Privacy Trade-Off Analysis

- Both time and correctness scores are compared for visual recognition tasks involving thumbnail and original images.
- ▶ 80 images are selected from a popular TV series, called Friends.
- Images are pixelated to Google's Vision API's failure point.

Usability Privacy Trade-Off Analysis: Results


- TOST (Two One-Sided Test) is used to study the similarity between the two distributions.
- Take-away: Thumbnails have similar usability as high-resolution images, even at a resolution where computer vision fails.

Conclusions and Future Directions

- Image privacy and usability are growing concerns.
- Thumbnail-preserving encryption is a promising way to balance these concerns.
 - Works with existing storage services.
- Some future directions:
 - More quantitative privacy and usability analysis.
 - Computing explicit iteration bounds.
 - Using AI to predict suitable thumbnail sizes.

Thanks!

My email address: <u>tajikk@oregonstate.edu</u> Project website: <u>https://photoencryption.org/</u>

