
A Systematic Framework to Generate Invariants for
Anomaly Detection in Industrial Control Systems

Cheng Feng 1,3 Venkata Reddy Palleti 2 Aditya Mathur 2

Deeph Chana 3

1Siemens Corporate Technology

2Singapore University of Technology and Design

3Imperial College London

February 26, 2019

C. Feng et al. NDSS 2019 February 26, 2019 1 / 22



Background
Industrial control systems

Industrial control systems (ICS) are combinations of software and hardware
that monitor and manage industrial processes.

They can be found in many national infrastructures, e.g., gas pipelines,
power plants, water treatment facilities, etc.

ICS have evolved from isolated networks to being heavily connected with
wider networks and services.

enhance operation efficiency and reduce maintenance costs
lead to new cyber security vulnerabilities.
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Background
ICS architecture

Supervisory Control
Layer: higher level
supervisory monitoring
and control function,
e.g., Human machine
interface, Anomaly
Detection systems

Control Layer:
communicate and issue
control commands to
field devices

Physical Layer: the
physical process is
directly monitored and
controlled
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Anomaly Detection Mechanisms for ICS

Device-based: use the idea of device fingerprinting to detect intrusive
devices

Program-based: discover anomalous behaviour by checking the
control or data flow in the control programs on programmable
controllers.

Network-based: reveal anomalies by investigating the network traffic
flow such as the header, payload, timing and sequence of messages in
the ICS network

Process-based: look directly at the physical process variables such as
sensor readings and actuator states, and their mathematical
relationships to identify anomalies
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Process-based Anomaly Detection

A common method:

build a predictive model, e.g., AR, LDS, RNN models:

x̂(t) = f (x{t−p:t−1},u{t−p:t−1};θ)

I x{t−p:t−1} the sensor measurements from time t − p to t − 1
I u{t−p:t−1} the actuator states from time t − p to t − 1
I x̂(t) the predicted sensor measurements at time t

An alarm will be raised when the residual error ‖x̂(t) − x(t)‖ > τ

Hard to define a decision boundary to separate normal and
abnormal sensor measurements; vulnerable to stealthy attacks.

Our work aims to propose a novel process-based detection model based on
invariant rules.
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Invariant Rules

Invariant rules:

physical conditions that
must be satisfied for
any given state of an
ICS

generally defined by
system engineers during
the design phase of the
system → this manual
process is inefficient
and suboptimal

LIT101-H⇒ MV101=OPEN

LIT301-L, LIT101-H, MV201=OPEN⇒ P101=ON

Can we derive invariant rules from a purely data-driven perspective?
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Problem Statement

D{1:T} = {d1,d2, . . . ,dT}: a time-series data log in which each signal
dt = {xt ,ut} consists of two vectors capturing sensor measurements and
actuator states, respectively.

I = {i1, i2, . . . , ik}: a set of k predicates called items, and each signal
dt ∈ D{1:T} satisfies a subset of predicates in I, thus can be denoted by
an itemset I t ⊆ I.

Formally, we define an invariant rule as follows:

X ⇒ Y where X ,Y ⊆ I ∧ X ∩ Y = ∅ ∧ σ(X ∪ Y )

σ(X )
= 1

An example:

{x t1 > ax t2 + b, ut1 = ON} ⇒ {x t3 < c , ut2 = OFF}
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Learning Steps

Given an arbitrary ICS data log D{1:T}, decompose the learning process
into two steps:

Predicate Generation:
I generate a set of meaningful predicates from the data log for the

construction of the predicate set I.

Invariant Rule Mining:
I with the predicate set I, transform the data log D{1:T} into a database

of itemsets I {1:T} = {I 1, I 2, . . . , IT}.
I mine meaningful invariant rules from the database I {1:T} which can

be used for anomaly detection in the ICS.
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Predicate Generation

Discrete variables (usually representing acuator states): enumerate the
possible states, e.g., for a pump actuator we generate predicates
Pump = ON and Pump = OFF

Continuous variables (usually representing sensor measurements): two
strategies utilize the dynamic of control systems:

Distribution-driven strategy:
I assume there are hidden control states to govern the update of sensor

readings at each time step
I Derive predicates based on which hidden control state a sensor update

occurs

Event-driven strategy:
I assume the updates of actuator states are triggered by reaching critical

values of sensor measurements.
I Derive predicates because on the (pre,post) conditions of the event

triggers
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Distribution-driven Strategy

Assumption: there are K hidden control states to govern the update of a
sensor:

∆x t = µk + εk

µk : the expected update under hidden control state k.
εk : Gaussian noise under this state.

Infer hidden control states:

Fit a GMM for the update of each sensor to capture the distributions
of the underlying hidden control states.

Decide value of K by criterion such as minimizing BIC score.

Generate predicates: based on K control states, generate predicates:
{∆x t ∼ N1, . . . ,∆x t ∼ NK}.
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Event-driven Strategy

Events: discrete changes on actuator states, e.g., pump is switched from
ON to OFF.

Find event triggers:

Define Te as the set of time points at which the event e occurs.
fit a lasso regression model for the values of sensor measurements at
the time steps in Te :

x̂ ti =
∑

j∈R i (e)

αjx
t
j + α0 ∀t ∈ Te

A trigger for event e is found if:

|x̂ ti − x ti | < ε ∀t ∈ Te

Generate predicates: for each event trigger, we generate predicates:

x ti <
∑

j∈R i (e)

αjx
t
j + α0 − ε and x ti >

∑
j∈R i (e)

αjx
t
j + α0 + ε
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Define Meaningful Invariant Rules

Conditions must be satisfied:

Minimum Support Condition

An invariant rule X ⇒ Y is meaningful, then:

σ(Z ) > max(γmin(σ(iz1), σ(iz2), . . . , σ(izn)), θ)

where Z = X ∪ Y , {iz1 , iz2 , . . . , izn} denotes all the items in Z .

Non-redundant Condition

An invariant rule X ⇒ Y is meaningful, then there must not exist another
invariant rule U ⇒W , such that X ⊆ U, Y ⊆W , and
σ(X ∪ Y ) = σ(U ∪W ).
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Mine Meaningful Invariant Rules

Mining meaningful invariant rules can be treated as a problem of
association rule mining.

Steps:

Mine all closed frequent itemsets with the multiple minimum support
conditions via algorithms like CFP-growth, CFP-growth++, etc.

Given any closed frequent itemset, partition the itemset Y into two
non-empty subsets, X and Y-X, a rule X ⇒ Y − X is generated if
σ(Y )/σ(X ) = 1.
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Experiment Setup

Based on datasets collected from a water distribution testbed (WADI)
and a secured water treatment plant (SWAT).

Data splited into training and testing set, both were collected every
one second from the testbeds non-stoppable for several days.

Various type of insider attacks injected in the testing set.

Performance compared with invariant rules defined by system
engineers and a residual-error based detection model.
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Experiment Result
WADI

For any given attack type i , we consider this attack type is detectable by a
model if TPRi > k × FPR, then we calculate:

P(k) =
N∑
i=1

1(TPRi > k × FPR)

N

Model TPR FPR NTPR P(1) P(3) P(5)

Design-based
0.4645 0.0060 0.5086 14/15 13/15 11/15

invariant rules

Residual error 0.1208 0.0003 0.0989 2/15 2/15 2/15 τe = 1× 10−4

-based model 0.4302 0.0012 0.3545 8/15 7/15 7/15 τe = 1× 10−3

Data-driven 0.4114 0.0002 0.5384 14/15 14/15 14/15 τe = 1× 10−4

invariant rules 0.4744 0.0021 0.5552 15/15 15/15 15/15 τe = 1× 10−3
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Experiment Result
SWAT

Model TPR FPR NTPR P(1) P(3) P(5)

Design-based
0.7589 0.0051 0.3043 18/36 15/36 15/36

invariant rules

Residual error 0.0730 0.0004 0.0592 6/36 6/36 6/36 τe = 1× 10−4

-based model 0.6208 0.0057 0.1029 11/36 10/36 9/36 τe = 1× 10−3

Data-driven 0.7087 0.0003 0.296 19/36 15/36 15/36 τe = 1× 10−4

invariant rules 0.7881 0.0012 0.4911 33/36 31/36 31/36 τe = 1× 10−3

C. Feng et al. NDSS 2019 February 26, 2019 16 / 22



Further Insights
why data-driven invariants outperform design-based invariants

Reason 1: more robust to noise on sensor measurements, can reduce FPR.

Example: the following design-based invariant rule:

1 LT 001 < 60⇒ 1 MV 004 = OFF

causes 55 false positives in the experiment on the WADI testbed.

The corresponding data-driven invariant rule:

1 LT 001 < 59.0399179104⇒ 1 MV 004 = OFF

which causes zero false positives instead.
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Further Insights
why data-driven invariants outperform design-based invariants

Reason 2: the data-driven approach can generate a significantly larger
invariant rule set, thus it has more chance to detect anomalies.

WADI No. of Rules

Design-based 22

τe = 1× 10−4 3259

τe = 1× 10−3 45847

SWAT No. of Rules

Design-based 38

τe = 1× 10−4 5805

τe = 1× 10−3 17737
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Further Insights
why data-driven invariants outperform design-based invariants

Reason 3: The data-driven approach can capture invariant rules which
span several stages, thus is capable to detect anomalies that can only be
revealed by looking at the global behavior of the system.

Example: 65% of the data-driven invariant rules generated in SWaT case
study span non-neighboring stages. However, the design-based invariant
rules only capture the relationship between the sensors and actuators
within the same or neighboring stages.
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Further Insights
pros and cons compared with residual error-based method

Pros:

more robust to process noise, enjoys relatively high TPR with a very
low FPR

self-explanatory, information can be used for further diagnosis

more robust to stealthy attacks

Cons:

larger delay

nonlinear relationships are not explicitly considered
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Conclusion

Invariant rules can be automatically learned from ICS data log using a
combination of several machine learning and data mining techniques.

Using data-driven invariant rules to do process-based anomaly
detection can achieve higher performance than using design-based
rules

Can achieve higher TPR compared with the residual error-based
method with similar FPR.

Possible extensions: adding nonlinear predicates, sequential invariant
rules, etc.
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End

Thank you!

Questions?

C. Feng et al. NDSS 2019 February 26, 2019 22 / 22


	Introduction and Motivation

