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Online password guessing

• Account lockout (3 strikes, etc)?
• IP blocking?
• Machine Learning?



Want P(abuse|x)

Goals:
•Minimal assumptions about attack traffic
•Scalability/Maintainability 

X = [username, password, time, IP address, UserAgent, ……] 



Back to the drawing board
• Suppose x is categorical feature:

• If we know Clean(), α then odds of being malicious:

Observed(x)	=	α Clean(x)	+	(1-α)	Abuse(x)
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Three Observations:

1. Clean(x) is stationary
• Aggregate behavior of millions of users is very stable

2. If we can estimate α we can estimate Clean(x)

• That is, α≈1 => 

3. We have a lot of data:
• E.g., subset that’s 1% of 1% of 1bn/day 

Observed(x)	=	α Clean(x)	+	(1-α)	Abuse(x)

Observed(x)	≈ Clean(x)	



A feature that separates legit/attack well

Succeed Fail Succeed Fail

100%

Legitimate Traffic Attack Traffic



Ratio of fails/logins

Failures: F	=	Fb +	Fm
Logins:    L	=	Lb +	Lm
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Assumptions:
• 12/13≈ 0
• ⁄53 13 = const.



•Ratio	of	fails/logins:
.
/ ≈c +	

.3
/4

•Abuse	increases	F/L,	never	decreases

Assumptions:
• ?@/?A≈ 0
• ⁄CA ?A = const.
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• If we knew c then:
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We can estimate abuse/legit ratio!!!

Assumptions:
• '"/'6≈ 0
• ⁄!6 '6 = const.



If we know c, we now know how to calculate (1-α)/α
If we can find a subset where (1-α)/α ≈ 0

OK, so how do we find c	=	 ⁄%& '&?

Observed(x)	=	α Clean(x)	+	(1-α)	Abuse(x)

Observed(x)	≈ Clean(x)	



Thought-experiment: attackers’ day off

1. If can identify an un-attacked block of (time, IPs, accounts, uAgent…)

2. We’ll know it when we see it:

Observed(x)	=	α Clean(x)	+	(1-α)	Abuse(x)

Observed(x)	≈ Clean(x)	
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Finding an unattacked subset
!(#)
%(#) =c +	

!*(#)
%+(#)

α=1.0 α=0.8α=0.95



Overall Algorithm
Break	into	k	subsets:

1. 12 = min
5

6(5)

9(5)

2. Clean(x)	≈	Observedk_min(x)

For		each	subset	k	=	0,1,2,	…,	K-1:
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Sensitivity Analysis: c	=	0.07,	)̂ =	0.0732
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Toy example
X = Failure from Top-1000 passwords

• P(X|abuse) = 0.97, P(X|legit) = 0.005

25% of traffic is abuse, but attacker has list of only 80% accounts.

For accounts on attackers list:

Accounts not on list
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Conclusions

ØSimple way to estimate amount of attack traffic
ØSimple way to find least-attacked subsets
ØSimple way to est. odds that any event is malicious

Main assumptions:
• Attacker fail rate is high
• Clean distribtuions slowly varying


