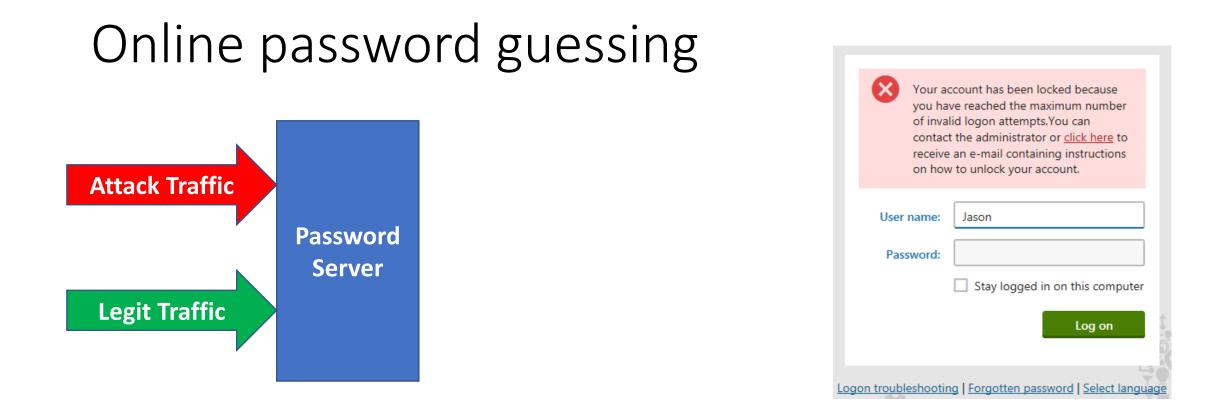
Distinguishing Attacks from Legitimate Authentication Traffic at Scale

> Cormac Herley and Stuart Schechter^{*} Microsoft Research, Redmond

> > * Work done while at MSR



- Account lockout (3 strikes, etc)?
- IP blocking?
- Machine Learning?

Want P(abuse | x)

X = [username, password, time, IP address, UserAgent,]

Goals:

- Minimal assumptions about attack traffic
- Scalability/Maintainability

Back to the drawing board

• Suppose *x* is categorical feature:

 $Observed(x) = \alpha \ Clean(x) + (1-\alpha) \ Abuse(x)$

• If we know *Clean(),* α *then* odds of being malicious:

$$\frac{P(abuse|x)}{P(legit|x)} = \frac{(1 - \alpha) Abuse(x)}{\alpha Clean(x)}$$

 $= \frac{Observed(x) - \alpha Clean(x)}{(1 - \alpha) Clean(x)} \frac{1 - \alpha}{\alpha}$

Machine Traffic

Human Traffic

Web

Server

Three Observations:

1. Clean(x) is stationary

- Aggregate behavior of millions of users is *very* stable
- 2. If we can estimate α we can estimate Clean(x)

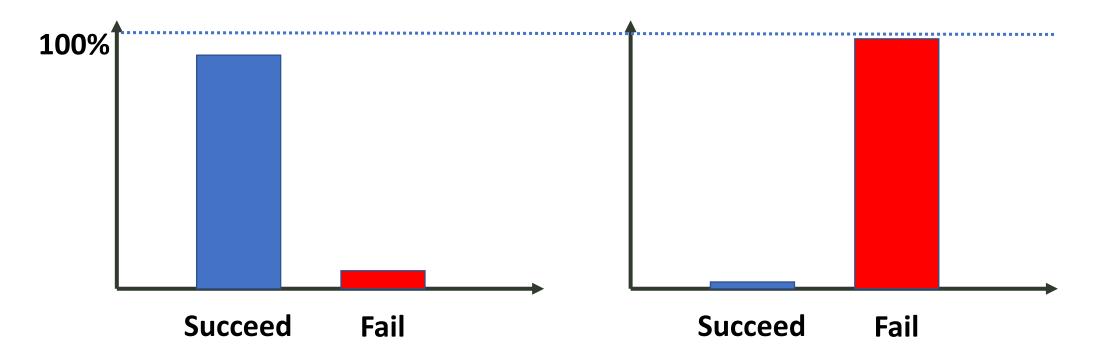
 $Observed(x) = \alpha \ Clean(x) + (1 - \alpha) \ Abuse(x)$

That is, α≈1 =>

 $Observed(x) \approx Clean(x)$

- 3. We have a lot of data:
 - E.g., subset that's 1% of 1% of 1bn/day

Attack Traffic



Ratio of fails/logins

Failures: $F = F_b + F_m$ Logins: $L = L_b + L_m$ Assumptions:

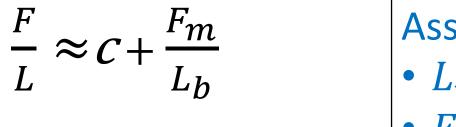
•
$$L_m/L_b \approx 0$$

• $F_b/L_b = \text{const.}$

$$\frac{F}{L} = \frac{F_b + F_m}{L_b + L_m} = \frac{F_b / L_b + F_m / L_b}{1 + L_m / L_b}$$

$$\approx \frac{F_b}{L_b} + \frac{F_m}{L_b} = C + \frac{F_m}{L_b}$$

• *Ratio of fails/logins:*



Assumptions: • $L_m/L_b \approx 0$ • $F_b/L_b = \text{const.}$

• Abuse increases F/L, never decreases

If we knew c then:

$$F_m \approx F - c \cdot L$$

$$\frac{1-\alpha}{\alpha} \approx \frac{F_m}{L_b + F_b} = \frac{F - c \cdot L}{L(1+c)}$$
Assumptions:
$$L_m / L_b \approx 0$$

$$F_b / L_b = \text{const.}$$

We can estimate abuse/legit ratio!!!

 $Observed(x) = \alpha \ Clean(x) + (1-\alpha) \ Abuse(x)$

If we know c, we now know how to calculate $(1-\alpha)/\alpha$ If we can find a subset where $(1-\alpha)/\alpha \approx 0$

 $Observed(x) \approx Clean(x)$

OK, so how do we find $c = F_b / L_b$?

Thought-experiment: attackers' day off

 $Observed(x) = \alpha \ Clean(x) + (1-\alpha) \ Abuse(x)$

1. If can identify an un-attacked block of (time, IPs, accounts, uAgent...)

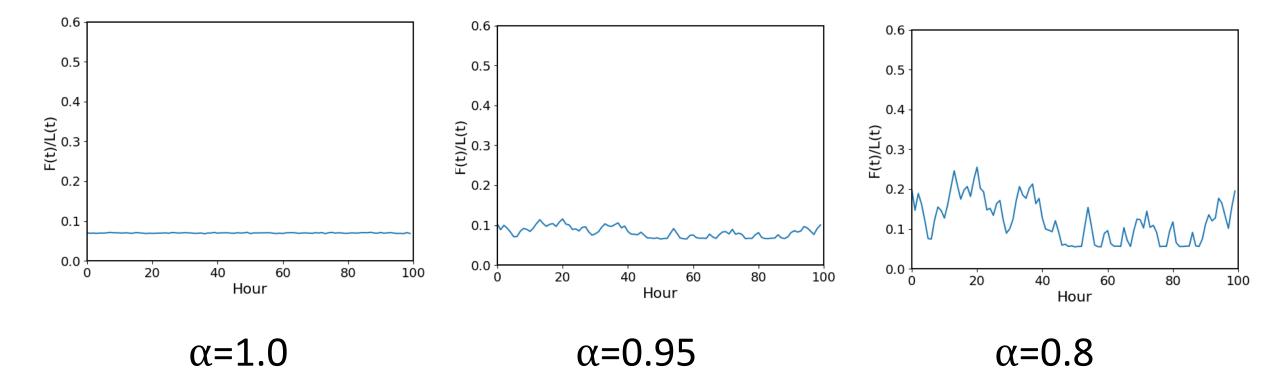
 $Observed(x) \approx Clean(x)$

2. We'll know it when we see it:

$$\frac{F(t)}{L(t)} = C + \frac{F_m(t)}{L_b(t)} \approx const$$

Finding an unattacked subset

$$\frac{F(t)}{L(t)} = C + \frac{F_m(t)}{L_b(t)}$$



Overall Algorithm

Break into k subsets: 1. $\hat{C} = \min_{k} \frac{F(k)}{L(k)}$

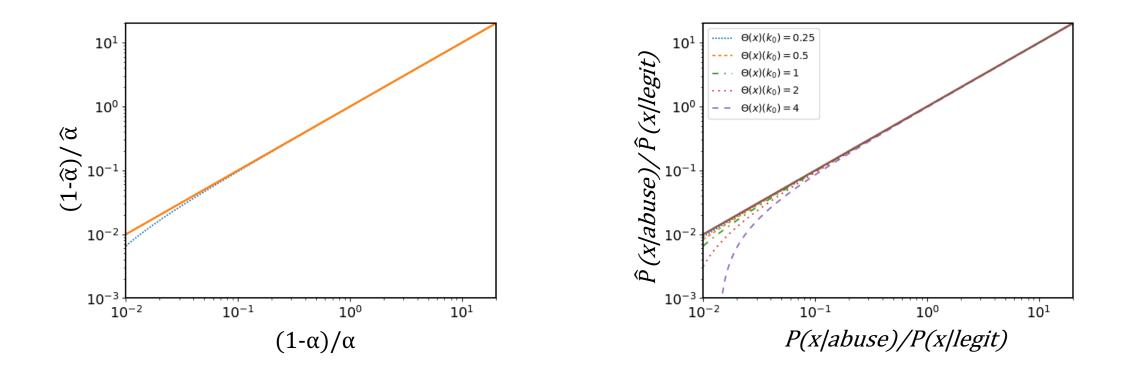
2. $Clean(x) \approx Observed_{k_{min}}(x)$

For each subset
$$k = 0, 1, 2, ..., K-1$$
:
3. $\frac{1-\alpha(k)}{\alpha(k)} \approx \frac{F(k) - c \cdot L(k)}{L(k) \cdot (1+c)}$

4.
$$\frac{P(x|abuse)(k)}{P(x|legit)(k)} = \frac{Observed_k(x) - \alpha(k) Clean(x)}{(1 - \alpha(k)) Clean(x)}$$

Odds malicious =
$$\frac{P(x|abuse)}{P(x|legit)} \cdot \frac{1-\alpha}{\alpha}$$

Sensitivity Analysis: $c = 0.07, \hat{c} = 0.0732$



$$\frac{P(abuse|x)}{P(legit|x)} = \frac{P(x|abuse)}{P(x|legit)} \cdot \frac{1-\alpha}{\alpha}$$

Toy example

X = Failure from Top-1000 passwords

• P(X|abuse) = 0.97, P(X|legit) = 0.005

25% of traffic is abuse, but attacker has list of only 80% accounts. For accounts on attackers list:

$$\frac{P(abuse|x)}{P(legit|x)} = \frac{P(x|abuse)}{P(x|legit)} \cdot \frac{1-\alpha}{\alpha} = \frac{0.97}{0.005} \cdot \frac{0.25/8}{0.75/10} \approx 80.8$$

Accounts not on list
$$\frac{P(abuse|x)}{P(legit|x)} = \frac{P(x|abuse)}{P(x|legit)} \cdot \frac{1-\alpha}{\alpha} = \frac{0.97}{0.005} \cdot 0 \approx 0$$

Conclusions

Simple way to estimate amount of attack traffic
 Simple way to find least-attacked subsets
 Simple way to est. odds that any event is malicious

Main assumptions:

- Attacker fail rate is high
- Clean distributions slowly varying