
Data Oblivious ISA Extensions for 
Side Channel-Resistant and High 

Performance Computing
Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher

University of Illinois at Urbana-Champaign

Network and Distributed System Security Symposium (NDSS), San Diego, 2019

1



Outline

• Introduction

• Data Oblivious ISA (OISA) Extension

• Hardware Implementation

• Security Analysis

• Evaluation

• Conclusion

2

Introduction               OISA Extension                 Hardware                  Security                 Evaluation      Conclusion



Microarchitectural Side Channels Attacks

3

if (secret)

a = *(addr1);

else

a = *(addr2);

Main Memory

Cache

Load Store Unit

Load addr1

Processor

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Microarchitectural Side Channels Attacks

4

if (secret)

a = *(addr1);

else

a = *(addr2);

Main Memory

Cache

addr1: XX

Load Store Unit

Load addr1

Processor

secret

== True!

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Microarchitectural Side Channels Attacks

5

L1 I Cache

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC, NVMs)

Core

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Microarchitectural Side Channels Attacks

6

L1 I Cache

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC, NVMs)

CoreSpeculative execution [Spectre’18]

Port contention [CBHPT’18]

Cache banking [YGH’16]

Non-inclusive LLC [YSGFCT’19]

DRAM [PGMSM’16]

4K aliasing [MES’17]

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Threat Model

• How to block all privacy threats from microarchitectural side channels.

• Software adversary is monitoring resource contention/program timing

7

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Why Microarchitectural Side Channels are Big Issues

Software does not know what hardware can leak

Hardware does not know what is secret in the software

8

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Why Microarchitectural Side Channels are Big Issues

Software does not know what hardware can leak

Hardware does not know what is secret in the software

9

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming

• A programmer’s solution to block all side channels
[WNLCSSH’14], [NWIWTS’15], [SDSCFRYD’13], [RLT’15], [DJB’06], etc.

• Different names:
• “constant time programming” (system community)

• “data oblivious programming” (applied crypto community)

• “writing programs in the circuit abstraction” (pure crypto community)

• Remove data-dependent behaviors from programs

10

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: An Example

11

/* Source program */

if (secret)

a = *(addr1);

else

a = *(addr2);

/* machine code */

a ← load (addr1);

b ← load (addr2);

cmov secret, a, b; 

// a = secret? b : a

a ← load addr1 b ← load addr2

cmov secret, b, a

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Three Assumptions

12

a ← load addr1 b ← load addr2

cmov secret, b, a

Security based on 3 assumptions

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Three Assumptions

13

a ← load addr1 b ← load addr2

cmov secret, b, a

Instructions processing data

Assumption 1: Every instruction is 
evaluated in a data-independent 
manner

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



14

a ← load addr1 b ← load addr2

cmov secret, b, a

Data transfer within and across 
hardware structures

Assumption 2: Data transfers in a 
data-independent manner

Data Oblivious Programming: Three Assumptions

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



15

a ← load addr1 b ← load addr2

cmov secret, b, a

Executed instruction sequence

Assumption 3: Instruction 
sequence is fixed regardless of 
program data

Data Oblivious Programming: Three Assumptions

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

16

efficiency

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security

17

a ← load addr1 b ← load addr2

cmov secret, b, a

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security:

18

Assumption 1: Instructions are 
evaluated in a data-independent 
manner

Violations:

• Input-dependent arithmetic
• Microcode
• Silent stores
• … …

a ← load addr1 b ← load addr2

cmov secret, b, a

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security:

19

a ← load addr1 b ← load addr2

cmov secret, b, a

Assumption 2: Data transfers in a 
data-independent manner

Violations:

• Data-based compression
• Microop fusion
• … …

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security: 

20

a ← load addr1 b ← load addr2

cmov secret, b, a

Assumption 3: Instruction 
sequence is fixed

Violations:

• Speculative execution

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security: 

21

a ← load addr1 b ← load addr2

cmov secret, b, aload secret

Assumption 3: Instruction 
sequence is fixed

Violations:

• Speculative execution

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security

• Portability

22

X86 Processor A
without branch 

prediction

X86 Processor B
with branch 
prediction

if (condition)

/* path A */

else

/* path B */

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security

• Portability

23

X86 Processor A
without branch 

prediction

X86 Processor B
with branch 
prediction

if (condition)

/* path A */

else

/* path B */

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

• Security

• Portability

• Efficiency

24

a ← load addr1 b ← load addr2

cmov secret, b, a

a ← load addr1 VS

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious Programming: Problems

Conclusion: data oblivious programing still lacks of a good contract

• Security: All assumptions are not in a contract that hardware can see

• Portability: No consistent contract across hardware implementations

• Efficiency: Software has to use simple instructions

25

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



This paper: Augment Instruction Set Architecture 
(ISA) for Data Oblivious Programming

26

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious ISA: the Right Solution

• Security
• ISA tells software what operations leak/do not leak

• ISA tells hardware what data is confidential

• Portability
• ISA is fixed across hardware implementations

• Efficiency
• Hardware can optimize expensive data oblivious operations since security 

semantics is clear at ISA level

27

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Data Oblivious ISA Extensions

Two mechanisms for:

1. Differentiate between Confidential/Public data
• New type of Dynamic information flow tracking

2. Indicate which operations are Safe to leak Confidential data
• New notion of Safe instruction operands

28

telling hardware what data is confidential

telling software what operations leak/do not leak

Security specifications added to the contract

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



New Dynamic Information Flow Tracking (DIFT)

• Programmer declares data as Public or Confidential

• Confidential data is tracked in hardware using DIFT

• Traditional DIFT only tracks retired data

• Our DIFT tracks data at all instruction stages

• At a high level:

• Public data needs no protection

• Confidential data must be protected

[tag: Confidential]

Register 3: 0

multiplier

Processor core

24

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public]

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Instruction with Safe Operands

• Each instruction’s input operand is defined as Unsafe or Safe
• Safe operand: Block side channels stemming from that operand if necessary

• Unsafe operand: No protection

• Example: multiplier
Zero-skipping →

input dependent timing

30

[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <unsafe>

<unsafe>

Fast, with
Zero-skipping

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Instruction with Safe Operands

• Each instruction’s input operand is defined as Unsafe or Safe
• Safe operand: Block side channels stemming from that operand if necessary

• Unsafe operand: No protection

• Example: multiplier
Zero-skipping →

input dependent timing

31

[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <safe>

<safe>

slow, without
Zero-skipping

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Safe Operands + DIFT: Transition Rules

• Public data → Safe operand: No protection needed

• Public data → Unsafe operand: No protection needed

• Confidential data → Safe operand: Execute with protection

• Confidential data → Unsafe operand: Stop speculation*

32

[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <safe>

<safe>

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Complete Proposal: Safe Operands + DIFT

1. ISA Design time:
ISA designers decide instructions with Safe/Unsafe operands

2. Hardware Design time:
Hardware designers augment processors with logic to enable/disable optimizations

3. Programing time:
Programmers annotate some program inputs and static data Public/Confidential

4. Runtime
Processor implements transition rules and taint propagation during execution.

33

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Key Benefits

1. Simple portable guarantee for programmers across implementations

2. Hardware & Data-oblivious-programming co-design

3. Defense against non-speculative and speculative execution attacks

34

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Key Benefit: HW-Algorithm Co-design

• Problem: Sensitive loads are performance bottlenecks

• Solution: add load with Safe address

• More opportunities for complex instructions
• Oblivious shuffle instruction

• Oblivious sort instruction

• … …

Implementation Efficiency
(object with size N)

Micro-code into loads w/ Unsafe address O(N)

Cryptographic techniques (e.g., Oblivious RAM) O(log N) or O(log2 N)

Hardware partitioning 
(e.g., cache partitioning, private scratchpads)

O(1), size restricted

35

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Key Benefit: HW-Algorithm Co-design

• Problem: Sensitive loads are performance bottlenecks

• Solution: add load with Safe address

• More opportunities for complex instructions
• Oblivious shuffle instruction

• Oblivious sort instruction

• … …

36

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Key Benefit: Defense Against Non-spec & Spec Attacks

Confidential 
data

Safe Operand

Confidential 
data

Safe Operand
Unsafe

Operand

Bad speculation

Defends against
Non-speculative 
attacks

Defends against 
Speculative attacks

37

Stop speculation

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Hardware Implementation

• Hardware prototyping on RISC-V BOOM processor
• Enumerate potential threat vectors of BOOM

• Propose an OISA extension for RISC-V ISA

• Implement new instructions with safe operand and 
DIFT on BOOM

• Design open sourced at github (see paper)

38

Current OISA Extension:
• Int/FP arithmetic w/ Safe operands
• Branches/Jumps w/ Unsafe

operands
• Two flavors of loads/stores

• Safe data, Unsafe address
• Safe data, Safe address

• Instructions to set data as 
Confidential/Public

Introduction OISA Extension                 Hardware Security                 Evaluation                  Conclusion



Security Analysis

• Formalize the security of data oblivious ISA extension

• Goal: prove for different confidential data, the trace of observable 
processor states is invariant.

• Two challenges:
• How to formalize attacker’s capability of observing processor states

• How to model modern processors -> designed an abstract BOOM machine

39

Introduction OISA Extension                 Hardware                  Security Evaluation                  Conclusion



Evaluation

• Achieve a speedup of up to 8.8x over baseline data oblivious 
programming

• Case studies:
• Constant time AES: 4.4x speedup over bitslice AES

• Memory oblivious library: more than 4.6x speedup over ZeroTrace [SGF’18]

40

Introduction OISA Extension                 Hardware                  Security                 Evaluation Conclusion



Conclusion

Data Oblivious ISA decouples security from 
functionality and implementation

Software receives consistent, portable security guarantee

Hardware is not constrained to specific implementation

Applies to both speculative & non-speculative side channels

41

Introduction OISA Extension Hardware                  Security                 Evaluation                  Conclusion



Questions?

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance Computing

Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher

University of Illinois at Urbana-Champaign

42



Thank you for listening to our talk!

43


