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Microarchitectural Side Channels Attacks
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Microarchitectural Side Channels Attacks
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if (secret)

a = *(addr1);

else

a = *(addr2);

Main Memory

Cache

addr1: XX

Load Store Unit

Load addr1

Processor

secret

== True!

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



Microarchitectural Side Channels Attacks
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Microarchitectural Side Channels Attacks
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L1 I Cache

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC, NVMs)

CoreSpeculative execution [Spectre’18]

Port contention [CBHPT’18]

Cache banking [YGH’16]

Non-inclusive LLC [YSGFCT’19]

DRAM [PGMSM’16]

4K aliasing [MES’17]
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Threat Model

• How to block all privacy threats from microarchitectural side channels.

• Software adversary is monitoring resource contention/program timing
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Why Microarchitectural Side Channels are Big Issues

Software does not know what hardware can leak

Hardware does not know what is secret in the software
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Data Oblivious Programming

• A programmer’s solution to block all side channels
[WNLCSSH’14], [NWIWTS’15], [SDSCFRYD’13], [RLT’15], [DJB’06], etc.

• Different names:
• “constant time programming” (system community)

• “data oblivious programming” (applied crypto community)

• “writing programs in the circuit abstraction” (pure crypto community)

• Remove data-dependent behaviors from programs
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Data Oblivious Programming: An Example
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/* Source program */

if (secret)

a = *(addr1);

else

a = *(addr2);

/* machine code */

a ← load (addr1);

b ← load (addr2);

cmov secret, a, b; 

// a = secret? b : a

a ← load addr1 b ← load addr2

cmov secret, b, a
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Data Oblivious Programming: Three Assumptions
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a ← load addr1 b ← load addr2

cmov secret, b, a

Security based on 3 assumptions
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Data Oblivious Programming: Three Assumptions
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a ← load addr1 b ← load addr2

cmov secret, b, a

Instructions processing data

Assumption 1: Every instruction is 
evaluated in a data-independent 
manner

Introduction OISA Extension                 Hardware                  Security                 Evaluation                  Conclusion



14

a ← load addr1 b ← load addr2

cmov secret, b, a

Data transfer within and across 
hardware structures

Assumption 2: Data transfers in a 
data-independent manner

Data Oblivious Programming: Three Assumptions
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a ← load addr1 b ← load addr2

cmov secret, b, a

Executed instruction sequence

Assumption 3: Instruction 
sequence is fixed regardless of 
program data

Data Oblivious Programming: Three Assumptions
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Data Oblivious Programming: Problems
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efficiency
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Data Oblivious Programming: Problems

• Security
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a ← load addr1 b ← load addr2

cmov secret, b, a
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Data Oblivious Programming: Problems

• Security:
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Assumption 1: Instructions are 
evaluated in a data-independent 
manner

Violations:

• Input-dependent arithmetic
• Microcode
• Silent stores
• … …

a ← load addr1 b ← load addr2

cmov secret, b, a
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Data Oblivious Programming: Problems

• Security:

19

a ← load addr1 b ← load addr2

cmov secret, b, a

Assumption 2: Data transfers in a 
data-independent manner

Violations:

• Data-based compression
• Microop fusion
• … …
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Data Oblivious Programming: Problems

• Security: 
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a ← load addr1 b ← load addr2

cmov secret, b, a

Assumption 3: Instruction 
sequence is fixed

Violations:

• Speculative execution
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Data Oblivious Programming: Problems

• Security: 

21

a ← load addr1 b ← load addr2

cmov secret, b, aload secret

Assumption 3: Instruction 
sequence is fixed

Violations:

• Speculative execution
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Data Oblivious Programming: Problems

• Security

• Portability
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X86 Processor A
without branch 

prediction

X86 Processor B
with branch 
prediction

if (condition)

/* path A */

else

/* path B */
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Data Oblivious Programming: Problems

• Security

• Portability

• Efficiency
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a ← load addr1 b ← load addr2

cmov secret, b, a

a ← load addr1 VS
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Data Oblivious Programming: Problems

Conclusion: data oblivious programing still lacks of a good contract

• Security: All assumptions are not in a contract that hardware can see

• Portability: No consistent contract across hardware implementations

• Efficiency: Software has to use simple instructions
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This paper: Augment Instruction Set Architecture 
(ISA) for Data Oblivious Programming
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Data Oblivious ISA: the Right Solution

• Security
• ISA tells software what operations leak/do not leak

• ISA tells hardware what data is confidential

• Portability
• ISA is fixed across hardware implementations

• Efficiency
• Hardware can optimize expensive data oblivious operations since security 

semantics is clear at ISA level
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Data Oblivious ISA Extensions

Two mechanisms for:

1. Differentiate between Confidential/Public data
• New type of Dynamic information flow tracking

2. Indicate which operations are Safe to leak Confidential data
• New notion of Safe instruction operands
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telling hardware what data is confidential

telling software what operations leak/do not leak

Security specifications added to the contract
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New Dynamic Information Flow Tracking (DIFT)

• Programmer declares data as Public or Confidential

• Confidential data is tracked in hardware using DIFT

• Traditional DIFT only tracks retired data

• Our DIFT tracks data at all instruction stages

• At a high level:

• Public data needs no protection

• Confidential data must be protected

[tag: Confidential]

Register 3: 0

multiplier

Processor core
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Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public]
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Instruction with Safe Operands

• Each instruction’s input operand is defined as Unsafe or Safe
• Safe operand: Block side channels stemming from that operand if necessary

• Unsafe operand: No protection

• Example: multiplier
Zero-skipping →

input dependent timing

30

[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <unsafe>

<unsafe>

Fast, with
Zero-skipping
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Instruction with Safe Operands

• Each instruction’s input operand is defined as Unsafe or Safe
• Safe operand: Block side channels stemming from that operand if necessary

• Unsafe operand: No protection

• Example: multiplier
Zero-skipping →

input dependent timing
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[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <safe>

<safe>

slow, without
Zero-skipping
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Safe Operands + DIFT: Transition Rules

• Public data → Safe operand: No protection needed

• Public data → Unsafe operand: No protection needed

• Confidential data → Safe operand: Execute with protection

• Confidential data → Unsafe operand: Stop speculation*
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[tag: Confidential]

Register 3: 0

multiplier

Processor core

Register 1: 1

Register 2: 0

[tag: Confidential]

[tag: Public] <safe>

<safe>
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Complete Proposal: Safe Operands + DIFT

1. ISA Design time:
ISA designers decide instructions with Safe/Unsafe operands

2. Hardware Design time:
Hardware designers augment processors with logic to enable/disable optimizations

3. Programing time:
Programmers annotate some program inputs and static data Public/Confidential

4. Runtime
Processor implements transition rules and taint propagation during execution.
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Key Benefits

1. Simple portable guarantee for programmers across implementations

2. Hardware & Data-oblivious-programming co-design

3. Defense against non-speculative and speculative execution attacks
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Key Benefit: HW-Algorithm Co-design

• Problem: Sensitive loads are performance bottlenecks

• Solution: add load with Safe address

• More opportunities for complex instructions
• Oblivious shuffle instruction

• Oblivious sort instruction

• … …

Implementation Efficiency
(object with size N)

Micro-code into loads w/ Unsafe address O(N)

Cryptographic techniques (e.g., Oblivious RAM) O(log N) or O(log2 N)

Hardware partitioning 
(e.g., cache partitioning, private scratchpads)

O(1), size restricted
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Key Benefit: Defense Against Non-spec & Spec Attacks

Confidential 
data

Safe Operand

Confidential 
data

Safe Operand
Unsafe

Operand

Bad speculation

Defends against
Non-speculative 
attacks

Defends against 
Speculative attacks
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Stop speculation
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Hardware Implementation

• Hardware prototyping on RISC-V BOOM processor
• Enumerate potential threat vectors of BOOM

• Propose an OISA extension for RISC-V ISA

• Implement new instructions with safe operand and 
DIFT on BOOM

• Design open sourced at github (see paper)
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Current OISA Extension:
• Int/FP arithmetic w/ Safe operands
• Branches/Jumps w/ Unsafe

operands
• Two flavors of loads/stores

• Safe data, Unsafe address
• Safe data, Safe address

• Instructions to set data as 
Confidential/Public
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Security Analysis

• Formalize the security of data oblivious ISA extension

• Goal: prove for different confidential data, the trace of observable 
processor states is invariant.

• Two challenges:
• How to formalize attacker’s capability of observing processor states

• How to model modern processors -> designed an abstract BOOM machine
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Evaluation

• Achieve a speedup of up to 8.8x over baseline data oblivious 
programming

• Case studies:
• Constant time AES: 4.4x speedup over bitslice AES

• Memory oblivious library: more than 4.6x speedup over ZeroTrace [SGF’18]
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Conclusion

Data Oblivious ISA decouples security from 
functionality and implementation

Software receives consistent, portable security guarantee

Hardware is not constrained to specific implementation

Applies to both speculative & non-speculative side channels
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Questions?
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Thank you for listening to our talk!
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