
Automating Patching of Vulnerable Open-Source
Software Versions in Application Binaries

Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses Ike,
Brendan Saltaformaggio, Wenke Lee

NDSS 2019
1

Background

• Open Source Software (OSS) is gaining popularity,
e.g. GitHub reported 31M users and 100M repos

• App marketplace is growing quickly with
over 2M apps on Play Store and Docker Hub

• App developers reuse OSS for many benefits,
meanwhile, OSS security flaws are inherited

2

Background

3

4K+ Security Patches
From NVD

100K+ Vulnerable Apps
High risk only

Can OEM vendors or end users take any action?

Goal

• OSSPatcher: an automated system that fixes n-day OSS vulnerabilities
in app binaries using publicly available source patches

• Prototype scope: fix vulnerable OSS written in C/C++ for Android apps

• Assumptions
• App developers compile OSS directly from release versions
• NVD is accurate, including vulnerable versions and patch commits of CVEs

4

5

OpenSSL: CVE-2014-3509, patch fb0bc2b
@@ static int ssl_scan_serverhello_tlsext(SSL *s,…
#ifndef OPENSSL_NO_EC

*al = TLS1_AD_DECODE_ERROR;
return 0;

}
- s->session->tlsext_ecpointformatlist_length = 0;
- if (s->session->tlsext_ecpointformatlist != …
- if ((s->session->tlsext_ecpointformatlist = …
+ if (!s->hit)
+ *al = TLS1_AD_INTERNAL_ERROR;

AdMob

Crashlytics

OkHttp

libssl.so

libgame.so

libmain.so
Conditional directives allow users

to customize the final binary

OpenSSL 1.1.0h contains 160+
config options

Function and variable
symbols can be stripped

Multiple OSS and proprietary
code can be linked together

Challenges
• Source patch analysis: configurable OSS variants
• Source-to-binary matching: stripped binaries
• App patching: statically linked binaries

17% apps use non-default config

libcrazy.so

Design

6

National Vuln.
Database

Other Vuln.
Database

OSS Patch
Commits

Vuln. OSS
Versions

Feasibility
Analyzer

Feasible
Commits

Feasible
Versions

Vuln. Android
Applications
Vuln. Docker

Images

Binaries w/
Vuln. OSS
Versions

Variability
Analyzer

AST w/
Variability

Function
Matcher

Config
Solver

Variable
Matcher

Function
Addrs

Config
Options

Variable
Addrs

Patch
Generator

Patch
Injector

Patch
Libraries

Vuln.
Binaries

Fixed
Apps

Feasibility Analysis

• Ensure patched lines are within functions
• Apply patches to vulnerable versions (i.e. git apply)
• Check for referenced types, structures and functions

7

@@ static int ssl_scan_serverhello_tlsext(SSL *s,…
#ifndef OPENSSL_NO_EC

*al = TLS1_AD_DECODE_ERROR;
return 0;

}
- s->session->tlsext_ecpointformatlist_length = 0;
- if (s->session->tlsext_ecpointformatlist != …
- if ((s->session->tlsext_ecpointformatlist = …
+ if (!s->hit)
+ *al = TLS1_AD_INTERNAL_ERROR;

Source vs Binary Matching

• Function matching: function names or reference/call relationship
• Config inference: variability-aware source features
• Variable matching: variable names or related features in PDG

8

vuln_func:
foo (B)

“hello” (B&A)
“world” (B&¬A)

B=1
B&¬A=1

Global variable reference
static int fits_intel = 0;
static int fits_motorola = 0;
FITS_FILE *fits_open(const char *filename){
if (sizeof (float) == 4){

if (strcmp(mode, "intel"))
fits_intel = (opt32[3] == 0x3f);

else if (strcmp(mode, "motorola"))
fits_motorola = (opt32[0] == 0x3f);

…
}

Nested Macros
#ifdef A
#define X “hello”
#else
#define X “world”
#endif
void vuln_func(){
#ifdef B
foo(X);

}

Vulnerable App

vuln_func:
foo

“world”
A=0
B=1

Constraint
Solving

App Patching

• OSSPatcher performs in-memory patching when the app launches
• Patching techniques can be hot-patching at runtime or binary rewriting

• Detour-based function patching and fix references via stub libraries

9

example.c
static int var = 0;
static void func(){…}
int vuln_func(){

var ++;
func(); }

example_stub.c
int var_stub = -1;
void func_stub(){}

example_patch.c
extern int var_stub;
extern void func_stub();
int patch_func() {

var_stub ++;
func_stub(); }

example.so

example_stub.so

example_patch.so

vuln_func

patch_func
var
func

var_stub
func_stub

Implementation

• Data collection
• cve-search for CVEs, OSSPolice for vulnerable apps, and OSSFuzz for compile

commands

• Source patch analysis
• Clang-based feasibility analysis, and TypeChef for VAST building

• Source-to-binary matching
• IDA Pro for function identification, Angr for binary feature extraction, and Z3

to solve configurations

• App patching
• Clang-based patch generation, and Criu for patch injection

10

Evaluation - Source to Binary Matching

• Ground truth
• Built 174 binaries from 6 selected OSS (e.g. OpenSSL, FFmpeg)
• Compiled with default configuration (./configure) and turned on/off one

feature to get customized binaries (e.g. --enable-dumpcap for wireshark)

• Experiments
• Variability-aware feature extraction from source patches
• Feature extract from stripped binaries
• Matching results are compared against debug information

• Results
• 95% precision and 82% recall

11

• Fallback mechanism for false positives
• Missed functions remain functional and vulnerable
• A richer set of features such as control-flow

features may help reduce false negatives

Source Patch Measurement

• 60% of 1,140 patches from 39 OSS are feasible

• 77% of 251 FFmpeg patches and 83% of 97 OpenSSL patches were
automatically applied to at least one vulnerable version

• 197 functions in FFmpeg were changed across 193 feasible patches,
145 functions in OpenSSL were changed among 80 feasible patches

• Average function sizes of FFmpeg and OpenSSL were 102 and 153,
average feature sizes were 25 and 31

12

Vulnerabilities are located in medium to large functions, with abundant features

No need to deal with the whole OSS since only a few functions are vulnerable

Patched Exploit Showcase

• Ran OSSPatcher on 10 vulnerabilities with public exploits and feasible
patches, and thwarted their exploitation after patching
• Android Chrome (use after free)
• Used Chrome to open a malicious xml file (calls libxml2) à use after free
• Patched functions: xmlXPathCompOpEvalPositionalPredicate

• Stagefright (remote code execution)
• Fed Hangouts app of Android 5.0 with malicious mp4 file à reverse shell
• Patched functions: SampleTable::setSampleToChunkParams

• Heartbleed (stealing data in memory)
• Setup Apache Httpd with OpenSSL 1.0.1f à steal information
• Patched functions: dtls1_process_heartbeat and tls1_process_heartbeat

13

Related Works

• Kernel patching
• Ksplice (EuroSys’09), Karma (Security’17)

• App patching
• PatchDroid (ACSAC’13), Instaguard (NDSS’18)

• N-day OSS vulnerability detection
• LibScout (CCS’16), OSSPolice (CCS’17)

• Source patch analysis
• A Large-Scale Empirical Study of Security Patches (CCS’17)

14

Conclusion

• OSSPatcher: an automated system that fixes n-day OSS vulnerabilities
in app binaries by automatically converting feasible source patches
into binaries and performing in-memory patching
• Variability-aware patching feasibility analysis
• Variability-aware source-to-binary matching
• Non-disruptive in-memory patching

• Measurement
• 675 source patches (60%) from 39 OSS are feasible
• Incurs negligible memory and performance overhead
• Apps are functional and exploits are thwarted after patching

15

Q&A

16

Feature Extraction

• Features that are present in both source code and binaries, e.g.
strings, constants, function calls and external variables
• Build Variability-aware Abstract Syntax Tree (VAST) to get conditional

features, e.g. 4 (A), 5 (¬A)
• Feature-based summarization for functions, e.g. foo contains 4

17

#ifdef A
#define X 4
#else
#define X 5
#endif

2*3+X

TypeChef
Lexer 2 · ∗ · 3 · + · 4A · 5¬A

TypeChef
Parser

+

*

5432

!A

Source and Binary Variability Measurement

• OpenSSL uses 55 macros in vulnerable functions, which further
expands to 82 in VAST

• FFmpeg uses 25 macros in vulnerable functions, which expands to 30
in VAST
• FFmpeg uses a configure script to allow conditional compilation at the

module or folder level

• Configurations of function ssl3_get_key_exchange for 2,340 Apps
using OpenSSL 1.0.1e, 17% apps use non-default config

18

Source Patch Measurement

• Cross-version portability of patches
• 80% of patches has <40 VV and can be applied to <15 FV
• 50% of patches have >35% FV/VV ratio

• Distribution of function sizes and patch sizes
• 80% of patches changes <40 and <10 lines in OpenSSL and FFmpeg
• 50% of vulnerable functions have >90 and >70 lines of code in OpenSSL and

FFmpeg

19

Newer versions are more likely to be feasible!

Patches are small fixes in large functions!

Performance and Efficiency

20

• Tested 1,000 patched apps with Monkey for 5 minutes

• Memory Overhead: less than 80KB (0.1%) for 80% of apps
• Zygote process consumes roughly 50MB of memory

• Performance Overhead
• Before-patching (loading): less than 350 milliseconds for 80% of apps
• After-patching (runtime): empirically conclude as negligible

• Dynamic coverage: 32% apps invoked at least one patched functions

Discussion

• Patching techniques can be hot-patching at runtime or binary
rewriting

• OSSPatcher could be applied to other Linux-based apps, e.g. Docker
Hub apps

• Limitations
• NVD information can be inaccurate
• Cannot perform source-to-binary matching for C++, due to TypeChef
• Dynamic code coverage for patched functions is low (32%)

21

