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Background

• Open Source Software (OSS) is gaining popularity, 
e.g. GitHub reported 31M users and 100M repos

• App marketplace is growing quickly with 
over 2M apps on Play Store and Docker Hub

• App developers reuse OSS for many benefits,
meanwhile, OSS security flaws are inherited
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Background
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4K+ Security Patches
From NVD

100K+ Vulnerable Apps
High risk only

Can OEM vendors or end users take any action?



Goal

• OSSPatcher: an automated system that fixes n-day OSS vulnerabilities 
in app binaries using publicly available source patches 

• Prototype scope: fix vulnerable OSS written in C/C++ for Android apps

• Assumptions
• App developers compile OSS directly from release versions
• NVD is accurate, including vulnerable versions and patch commits of CVEs
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OpenSSL: CVE-2014-3509, patch fb0bc2b
@@ static int ssl_scan_serverhello_tlsext(SSL *s,…
#ifndef OPENSSL_NO_EC

*al = TLS1_AD_DECODE_ERROR;
return 0;

}
- s->session->tlsext_ecpointformatlist_length = 0;
- if (s->session->tlsext_ecpointformatlist != …
- if ((s->session->tlsext_ecpointformatlist = …
+ if (!s->hit)
+ *al = TLS1_AD_INTERNAL_ERROR;

AdMob

Crashlytics

OkHttp

libssl.so

libgame.so

libmain.so
Conditional directives allow users 

to customize the final binary

OpenSSL 1.1.0h contains 160+ 
config options

Function and variable 
symbols can be stripped

Multiple OSS and proprietary 
code can be linked together

Challenges
• Source patch analysis: configurable OSS variants
• Source-to-binary matching: stripped binaries
• App patching: statically linked binaries

17% apps use non-default config

libcrazy.so



Design
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Feasibility Analysis

• Ensure patched lines are within functions
• Apply patches to vulnerable versions (i.e. git apply)
• Check for referenced types, structures and functions
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@@ static int ssl_scan_serverhello_tlsext(SSL *s,…
#ifndef OPENSSL_NO_EC

*al = TLS1_AD_DECODE_ERROR;
return 0;

}
- s->session->tlsext_ecpointformatlist_length = 0;
- if (s->session->tlsext_ecpointformatlist != …
- if ((s->session->tlsext_ecpointformatlist = …
+ if (!s->hit)
+ *al = TLS1_AD_INTERNAL_ERROR;



Source vs Binary Matching

• Function matching: function names or reference/call relationship
• Config inference: variability-aware source features
• Variable matching: variable names or related features in PDG
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vuln_func:
foo (B)

“hello” (B&A)
“world” (B&¬A)

B=1
B&¬A=1

Global variable reference
static int fits_intel = 0; 
static int fits_motorola = 0;
FITS_FILE *fits_open(const char *filename){ 
if (sizeof (float) == 4){

if (strcmp(mode, "intel"))
fits_intel = (opt32[3] == 0x3f); 

else if (strcmp(mode, "motorola"))
fits_motorola = (opt32[0] == 0x3f); 

…
}

Nested Macros
#ifdef A
#define X “hello”
#else
#define X “world”
#endif
void vuln_func(){
#ifdef B
foo(X);

}

Vulnerable App

vuln_func:
foo

“world”
A=0
B=1

Constraint
Solving



App Patching

• OSSPatcher performs in-memory patching when the app launches
• Patching techniques can be hot-patching at runtime or binary rewriting

• Detour-based function patching and fix references via stub libraries
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example.c
static int var = 0; 
static void func(){…}
int vuln_func(){ 

var ++;
func(); }

example_stub.c
int var_stub = -1; 
void func_stub(){}

example_patch.c
extern int var_stub;
extern void func_stub();
int patch_func() {

var_stub ++;
func_stub(); }

example.so

example_stub.so

example_patch.so

vuln_func

patch_func
var
func

var_stub
func_stub



Implementation

• Data collection
• cve-search for CVEs, OSSPolice for vulnerable apps, and OSSFuzz for compile 

commands

• Source patch analysis
• Clang-based feasibility analysis, and TypeChef for VAST building

• Source-to-binary matching
• IDA Pro for function identification, Angr for binary feature extraction, and Z3 

to solve configurations

• App patching
• Clang-based patch generation, and Criu for patch injection
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Evaluation - Source to Binary Matching

• Ground truth
• Built 174 binaries from 6 selected OSS (e.g. OpenSSL, FFmpeg)
• Compiled with default configuration (./configure) and turned on/off one 

feature to get customized binaries (e.g. --enable-dumpcap for wireshark)

• Experiments
• Variability-aware feature extraction from source patches
• Feature extract from stripped binaries
• Matching results are compared against debug information

• Results
• 95% precision and 82% recall
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• Fallback mechanism for false positives
• Missed functions remain functional and vulnerable
• A richer set of features such as control-flow 

features may help reduce false negatives



Source Patch Measurement

• 60% of 1,140 patches from 39 OSS are feasible

• 77% of 251 FFmpeg patches and 83% of 97 OpenSSL patches were 
automatically applied to at least one vulnerable version

• 197 functions in FFmpeg were changed across 193 feasible patches, 
145 functions in OpenSSL were changed among 80 feasible patches

• Average function sizes of FFmpeg and OpenSSL were 102 and 153, 
average feature sizes were 25 and 31
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Vulnerabilities are located in medium to large functions, with abundant features

No need to deal with the whole OSS since only a few functions are vulnerable



Patched Exploit Showcase

• Ran OSSPatcher on 10 vulnerabilities with public exploits and feasible 
patches, and thwarted their exploitation after patching
• Android Chrome (use after free)
• Used Chrome to open a malicious xml file (calls libxml2) à use after free
• Patched functions: xmlXPathCompOpEvalPositionalPredicate

• Stagefright (remote code execution)
• Fed Hangouts app of Android 5.0 with malicious mp4 file à reverse shell
• Patched functions: SampleTable::setSampleToChunkParams

• Heartbleed (stealing data in memory)
• Setup Apache Httpd with OpenSSL 1.0.1f  à steal information
• Patched functions: dtls1_process_heartbeat and tls1_process_heartbeat
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Related Works

• Kernel patching
• Ksplice (EuroSys’09), Karma (Security’17)

• App patching
• PatchDroid (ACSAC’13), Instaguard (NDSS’18)

• N-day OSS vulnerability detection
• LibScout (CCS’16), OSSPolice (CCS’17)

• Source patch analysis
• A Large-Scale Empirical Study of Security Patches (CCS’17)
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Conclusion

• OSSPatcher: an automated system that fixes n-day OSS vulnerabilities 
in app binaries by automatically converting feasible source patches 
into binaries and performing in-memory patching
• Variability-aware patching feasibility analysis
• Variability-aware source-to-binary matching
• Non-disruptive in-memory patching

• Measurement
• 675 source patches (60%) from 39 OSS are feasible
• Incurs negligible memory and performance overhead
• Apps are functional and exploits are thwarted after patching
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Q&A
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Feature Extraction

• Features that are present in both source code and binaries, e.g. 
strings, constants, function calls and external variables
• Build Variability-aware Abstract Syntax Tree (VAST) to get conditional 

features, e.g. 4 (A), 5 (¬A)
• Feature-based summarization for functions, e.g. foo contains 4
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#ifdef A 
#define X 4 
#else 
#define X 5 
#endif 

2*3+X

TypeChef
Lexer 2 · ∗ · 3 · + · 4A · 5¬A

TypeChef
Parser

+

*

5432

!A



Source and Binary Variability Measurement

• OpenSSL uses 55 macros in vulnerable functions, which further 
expands to 82 in VAST

• FFmpeg uses 25 macros in vulnerable functions, which expands to 30 
in VAST
• FFmpeg uses a configure script to allow conditional compilation at the 

module or folder level

• Configurations of function ssl3_get_key_exchange for 2,340 Apps 
using OpenSSL 1.0.1e, 17% apps use non-default config
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Source Patch Measurement

• Cross-version portability of patches
• 80% of patches has <40 VV and can be applied to <15 FV
• 50% of patches have >35% FV/VV ratio

• Distribution of function sizes and patch sizes
• 80% of patches changes <40 and <10 lines in OpenSSL and FFmpeg
• 50% of vulnerable functions have >90 and >70 lines of code in OpenSSL and 

FFmpeg
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Newer versions are more likely to be feasible!

Patches are small fixes in large functions!



Performance and Efficiency
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• Tested 1,000 patched apps with Monkey for 5 minutes

• Memory Overhead: less than 80KB (0.1%) for 80% of apps 
• Zygote process consumes roughly 50MB of memory

• Performance Overhead
• Before-patching (loading): less than 350 milliseconds for 80% of apps 
• After-patching (runtime): empirically conclude as negligible 

• Dynamic coverage: 32% apps invoked at least one patched functions



Discussion

• Patching techniques can be hot-patching at runtime or binary 
rewriting

• OSSPatcher could be applied to other Linux-based apps, e.g. Docker 
Hub apps

• Limitations
• NVD information can be inaccurate
• Cannot perform source-to-binary matching for C++, due to TypeChef
• Dynamic code coverage for patched functions is low (32%)
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