Quantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers

Muhammad Ahmad Bashir Umar Farooq Maryam Shahid Muhammad Fareed Zaffar Christo Wilson

Northeastern University Khoury College of Computer Sciences

Online Tracking

Inferences Used For Targeted Ads

Jeff Green played starter's minutes in Saturday's win. (Wilfredo Lee/Associated Press)

Sign In 👤

lost Read Sports

- 1 Redskins earn an ugly 16-3 win over the Buccaneers, remain in first place in the NFC East 2 Analysis Redskins-Buccaneers takeaways: Tampa dominates the stat sheet, including with game-altering turnovers 3 Saints and Chiefs roll; Baker Mayfield leads Browns to victory; Patriots slip up 4 Analysis The Patriots' path back to the
- Super Bowl just got more complicated 5 Exercise rider and horse dead after early-morning accident at Churchill
- arly-morning accident at Churchill Downs 112

Inferences Used For Targeted Ads

Jeff Green played starter's minutes in Saturday's win. (Wilfredo Lee/Associated Press)

Sign In 👤

We Don't Know What Ad Networks Infer

We Don't Know What Ad Networks Infer

Goals of the Study

- 1. Who knows what and how much?
- 2. How do users perceive interests inferred about them?
- 3. How are the interests inferred?
- 4. How do privacy practices impact amount of inferences drawn?

Goals of the Study

- 1. Who knows what and how much?
- 2. How do users perceive interests inferred about them?
- 3. How are the interests inferred?
- 4. How do privacy practices impact amount of inferences drawn?

Ad Preference Managers (APMs)

- Transparency tools
- Let users control the inferred interests about them

Ad Preference Managers (APMs)

- Transparency tools
- Let users control the inferred interests about them

Overview

- 1. Data collection
- 2. Interests inferred by different APMs
- 3. Perception of interests
- 4. Limitations & Conclusion

- We recruited 220 participants
 - 82 from Pakistan (university students), 138 from US (crowdsource)

- We recruited 220 participants
 - 82 from Pakistan (university students), 138 from US (crowdsource)
- Used our browser extension to \bullet
 - A. Take a survey
 - Contribute data from their APMs + Historical Data B.

- We recruited 220 participants
 - 82 from Pakistan (university students), 138 from US (crowdsource)
- Used our browser extension to
 - A. Take a survey
 - B. Contribute data from their APMs + Historical Data

Ethics

- Obtained IRB from both LUMS and Northeastern University
- Obtained informed consent.

Foreground	
ckground	

Foreground

Foreground

Foreground

Background

Online Ads & Privacy Practices

Foreground

Background

Historical Data

Online Ads & Privacy Practices

Browsing

History

Foreground

Foreground

Browsing

History

Background

Online Ads & Privacy Practices

YOUR AD

GHOSTERY

ABP

Dynamic Questions

Ad Preference Managers

U

Randomly Sampled Interests

Dynamic Questions

~~ Socce	r shoes					
	* Are you interested in 'Soccer shoes'?					
	Not at all	A tiny amount	Somewhat	Very much	Extremely	
	* Have yo	u recently see	n online adv	vertisemen	ts related	
	O Ye	25				
	No					
	• I c	don't remember				

d to 'Soccer shoes'?

Dynamic Questions

~~ Soccer shoes

* Are you interested in 'Soccer shoes'?

Not at all A tiny amount	Somewhat	Very much	E
--------------------------	----------	-----------	---

* Have you recently seen online advertisements related to 'Soccer shoes'?

• Yes	
No	
I don't remember	

* Have the online ads you have seen related to 'Soccer shoes' been relevant and useful to you (e.g. the ad introduced you to a new product that you appreciate, or reminded you to purchase a product you had intended to buy)?

Extremely

220 participants (82 from Pakistan, 138 from US)

For each participant, we have:

220 participants (82 from Pakistan, 138 from US)

For each participant, we have:

Foreground

220 participants (82 from Pakistan, 138 from US)

For each participant, we have:

Foreground

- Survey
 - 1. Basic demographics
 - 2. General web usage
 - 3. Interaction with Ads
 - 4. Privacy practices
 - 5. Knowledge about APMs
 - 6. Relevance of interests

220 participants (82 from Pakistan, 138 from US)

For each participant, we have:

Foreground

- Survey lacksquare
 - 1. Basic demographics
 - 2. General web usage
 - 3. Interaction with Ads
 - 4. Privacy practices
 - 5. Knowledge about APMs
 - 6. Relevance of interests

- Interests from 4 APMS lacksquare
 - 1. Facebook
 - 2. Google
 - 3. BlueKai
 - 4. eXelate
- Browsing history (last 3 months)
- Search term history (last 3 months)

Goals of the Study

- 1. Who knows what and how much?
 - What inferences are drawn by each APM?
 - Does every APM infer the same information?
- 2. How do users perceive these interests inferred about them?

Table: Interests gathered from 220 participants

		Inferred Interests		
APM	Users	Unique	Total	Avg. per User
Google	213	594	9,013	42.3
Facebook	208	25,818	108,930	523.7
BlueKai	220	3,522	92,926	422.4
eXelate	218	139	1,941	8.9

Table: Interests gathered from 220 participants

		Inferred Interests		
APM	Users	Unique	Total	Avg. per User
Google	213	594	9,013	42.3
Facebook	208	25,818	108,930	523.7
BlueKai	220	3,522	92,926	422.4
eXelate	218	139	1,941	8.9

Facebook gathers maximum interests, while ulleteXelate has the least

Table: Interests gathered from 220 participants

		Inferred Interests		
APM	Users	Unique	Total	Avg. per User
Google	213	594	9,013	42.3
Facebook	208	25,818	108,930	523.7
BlueKai	220	3,522	92,926	422.4
eXelate	218	139	1,941	8.9

- Facebook gathers maximum interests, while ulleteXelate has the least
- Bluekai had a profile on every user
Which APM Knows More?

Table: Interests gathered from 220 participants

		In	Inferred Intere	
APM	Users	Unique	Total	
Google	213	594	9,013	
Facebook	208	25,818	108,930	
BlueKai	220	3,522	92,926	
eXelate	218	139	1,941	

- Facebook gathers maximum interests, while lacksquareeXelate has the least
- Bluekai had a profile on every user

Fig: CDF of interests per user

14

Which APM Knows More?

Table: Interests gathered from 220 participants

		Inferred Interests		
APM	Users	Unique	Total	Avg. per User
Google	213	594	9,013	42.3
Facebook	208	25,818	108,930	523.7
BlueKai	220	3,522	92,926	422.4
eXelate	218	139	1,941	8.9

- Facebook gathers maximum interests, while eXelate has the least
- Bluekai had a profile on every user

14

We cannot directly compare interests from different APMs

- Synonyms: Real Estate, Property
- Granularity: Sports, Tennis, Wimbledon

We cannot directly compare interests from different APMs

- Synonyms: Real Estate, Property
- Granularity: Sports, Tennis, Wimbledon

For fair comparison, we need to map interests to a common space

We cannot directly compare interests from different APMs

- **Synonyms:** Real Estate, Property
- Granularity: Sports, Tennis, Wimbledon

For fair comparison, we need to map interests to a common space

We used Open Directory Project (ODP)

Manually mapped raw interest to 465 ODP categories

We cannot directly compare interests from different APMs

- Synonyms: Real Estate, Property
- Granularity: Sports, Tennis, Wimbledon

For fair comparison, we need to map interests to a common space

We used Open Directory Project (ODP)

Manually mapped raw interest to 465 ODP categories

We cannot directly compare interests from different APMs

- Synonyms: Real Estate, Property
- Granularity: Sports, Tennis, Wimbledon

For fair comparison, we need to map interests to a common space

We used Open Directory Project (ODP)

Manually mapped raw interest to 465 ODP categories

Inferred Interests After ODP Mapping

Fig: CDF of raw interests per user

Inferred Interests After ODP Mapping

Fig: CDF of raw interests per user

Fig: Per Participant overlap of ODP categorized interests (min, 5th, median, 95th, max)

FB eXelate BlueKai

Fig: Per Participant overlap of ODP categorized interests (min, 5th, median, 95th, max)

Fractional Overlap

Key Takeaways

Different APMs have different 'portraits' of users

Lack of overlap across APMs

Goals of the Study

- 1. Who knows what and how much?
 - What inferences are drawn by each APM?
 - Does everyone infer the same information?
- 2. How do users perceive these interests inferred about them?
 - Do some APMs infer more relevant interests?
 - Do users find ads targeted against these interests relevant?

"Half the money I spend on advertising is wasted; the trouble is I don't know which half."

-- John Wanamaker

Fig: Fractions of interests rated as relevant (on a 1-5 scale) by participants

0.6 0.8 1 evant Interests

Fig: Fractions of interests rated as relevant (on a 1-5 scale) by participants

Fig: Fractions of interests rated as relevant (on a 1-5 scale) by participants

Fig: Fractions of interests rated as relevant (on a 1-5 scale) by participants

Yes Maybe

Maybe Yes

- General trend of more ads seen for more relevant interests.
- Similar distribution across all.

Maybe Yes

- General trend of more ads seen for more relevant interests.
- Similar distribution across all.

Fig: Fractions of interests rated as relevant (on a 1-5 scale) by participants

Fig: Interest Relevance vs. Seeing Relevant Ads

Fig: Interest Relevance vs. Seeing Relevant Ads

Users marked ads targeted to low relevant interests less useful

Fig: Interest Relevance vs. Seeing Relevant Ads

Key Takeaways

Majority of the interests marked not relevant

Ads targeted to low relevance interests marked not useful

Limitations & Challenges

- 1. Participant sample is not representative of all web users
- 2. Single snapshot of APMs.
 - A better way would be to conduct a longitudinal study.
- 3. Users can have biases in recalling relevant ads.

Summary

- First large-scale study of interest profiles from four APMs
- Different APMs have different 'portraits' of the user.
- Participants rated only < 30% interests as strongly relevant.

Q: Are the marginal utility gains from targeted ads justified at the cost of privacy?

More Results in the Paper ...

- 1. Origin of Interests
 - What fraction of the interests could be explained by historical data?
 - A majority of interests could not be explained by recent browsing history
- 2. Affect of privacy-conscious behaviors on interest profiles
 - No significant correlations

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers

Backup Slides

Participants Dropping Out

- Overall 9 participants refused to take the survey
 - 3 provided feedback.
 - 1 did not have time and 2 had privacy reservations

Knowledge of APMs

Goals of the Study

- 1. Who knows what and how much?
 - What inferences are drawn by the APMs?
 - Does everyone infer the same information?
- 2. How do users perceive these interests inferred about them?
 - Do some APMs draw better inferences?
- 3. How are the inferences drawn?

Browsing History

Search History

Browsing History

Bin

% People in

Fig: Amount of historical data collected from the participants

- 50% people had 80-90 days of browsing history
- 90% people had 30-40 days if search history

Fig: Amount of historical data collected from the participants

Browsing

Out of 1.2M unique URLs, we extracted ~42K unique FQDNs

Browsing

- Out of 1.2M unique URLs, we extracted ~42K unique FQDNs
- We used PhantomJS to collect trackers from these 42K FQDNs
 - We crawl home page + 5 additional pages

Browsing

- Out of 1.2M unique URLs, we extracted ~42K unique FQDNs
- We used PhantomJS to collect trackers from these 42K FQDNs
 - We crawl home page + 5 additional pages
- Only considered those domains, where any of the APM trackers were present

Browsing

- Out of 1.2M unique URLs, we extracted ~42K unique FQDNs
- We used PhantomJS to collect trackers from these 42K FQDNs
 - We crawl home page + 5 additional pages
- Only considered those domains, where any of the APM trackers were present

Search

Considered the URL of the first search result

51,500 unique domains

We use SimilarWeb tool to map domains to (221) categories

- 77% success rate
- We then map each category to ODP category

51,500 unique domains

We use SimilarWeb tool to map domains to (221) categories

- 77% success rate
- We then map each category to ODP category

- 77% success rate
- We then map each category to ODP category

- 77% success rate

Origins of Interests

Browsing History Search & Click Fractional Overlap 0.75 0.5 0.25 0 Google BILICHT OF OLATO $\widehat{\mathbf{A}}$

Fig: Overlap of Participants history with each APM (min, 5th, median, 95th, max)

Origins of Interests

Browsing History Search & Click Fractional Overlap 0.75 0.5 0.25 0 BILLOT OF OLDER $\widehat{\mathbf{A}}$

G00918

Fig: Overlap of Participants history with each APM (min, 5th, median, 95th, max)

Origins of Interests

Key Takeaways

Browsing History explain <10% of interests, except for Google (30%) Search History does not add much to the explanation on top of BH

Fig: Overlap of Participants history with each APM (min, 5th, median, 95th, max)

Browsing & Search History Domains

- More domains in Search as compared to Browsing
- Very high label rate for Search
- >75% Browsing domains labeled for 80% people

CDF

BlueKai Branded Data

alliant acxiom datalogix acquireweb lotame affinity answers experian placeiq adadvisor by neustar tivo

