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3. How are the interests inferred?


4. How do privacy practices impact amount of inferences drawn?
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• Transparency tools 
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Overview

1. Data collection


2. Interests inferred by different APMs


3. Perception of interests


4. Limitations & Conclusion
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Data Collection
• We recruited 220 participants


• 82 from Pakistan (university students), 138 from US (crowdsource)

• Used our browser extension to


A. Take a survey


B. Contribute data from their APMs + Historical Data

Ethics  

• Obtained IRB from both LUMS and Northeastern University


• Obtained informed consent.
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Summary of Data Collection
220 participants (82 from Pakistan, 138 from US)


For each participant, we have:

Foreground Background

• Survey

1. Basic demographics

2. General web usage

3. Interaction with Ads

4. Privacy practices

5. Knowledge about APMs

6. Relevance of interests 

• Interests from 4 APMS

1. Facebook

2. Google

3. BlueKai

4. eXelate


• Browsing history (last 3 months)


• Search term history (last 3 months) 
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Goals of the Study

1. Who knows what and how much?


• What inferences are drawn by each APM?


• Does every APM infer the same information?


2. How do users perceive these interests inferred about them?
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Inferred Interests
APM Users Unique Total Avg. per User
Google 213 594 9,013 42.3
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BlueKai 220 3,522 92,926 422.4

eXelate 218 139 1,941 8.9

Table: Interests gathered from 220 participants
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Canonicalization of Interests
We cannot directly compare interests from different APMs


• Synonyms:    Real Estate, Property  

• Granularity:   Sports, Tennis, Wimbledon 

For fair comparison, we need to map interests to a common space
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Inferred Interests After ODP Mapping
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Key Takeaways 
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Different APMs have different ‘portraits’ of users

Lack of overlap across APMs



Goals of the Study

1. Who knows what and how much?


• What inferences are drawn by each APM?


• Does everyone infer the same information?


2. How do users perceive these interests inferred about them?


• Do some APMs infer more relevant interests?


• Do users find ads targeted against these interests relevant?
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“Half the money I spend on 
advertising is wasted; the trouble 
is I don't know which half.”

-- John Wanamaker
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Participants’ Ratings of Interests
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Majority of Interests Marked Irrelevant

Fig: Fractions of interests rated as relevant  
(on a 1-5 scale) by participants
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Key Takeaways 
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Majority of the interests marked not relevant

Ads targeted to low relevance interests marked 
not useful



Limitations & Challenges

1. Participant sample is not representative of all web users


2. Single snapshot of APMs.


• A better way would be to conduct a longitudinal study.


3. Users can have biases in recalling relevant ads.
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Summary

• First large-scale study of interest profiles from four APMs


• Different APMs have different ‘portraits’ of the user.


• Participants rated only < 30% interests as strongly relevant.


 
Q: Are the marginal utility gains from targeted ads justified at the cost of   
privacy?
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More Results in the Paper …

1. Origin of Interests 


• What fraction of the interests could be explained by historical data?


• A majority of interests could not be explained by recent browsing history


2. Affect of privacy-conscious behaviors on interest profiles


• No significant correlations

Questions?
ahmad@ccs.neu.eduQuantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers  
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Participants Dropping Out

• Overall 9 participants refused to take the survey 


• 3 provided feedback. 


• 1 did not have time and 2 had privacy reservations 
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Knowledge of APMs
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Goals of the Study

1. Who knows what and how much?


• What inferences are drawn by the APMs?


• Does everyone infer the same information?


2. How do users perceive these interests inferred about them?


• Do some APMs draw better inferences?


3. How are the inferences drawn?
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Fig: Amount of historical data collected from the participants

• 50% people had 80-90 days of browsing history


• 90% people had 30-40 days if search history 
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Browsing

• Out of 1.2M unique URLs, we extracted ~42K unique FQDNs

• We used PhantomJS to collect trackers from these 42K FQDNs


• We crawl home page + 5 additional pages 

• Only considered those domains, where any of the APM trackers were present

Search

• Considered the URL of the first search result 
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