

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt, Yang Zhang, Mathias Humbert, Pascal Berrang, Haixu Tang, XiaoFeng Wang, Michael Backes

CISPA Helmholtz Center for Information Security, Swiss Data Science Center, ETH Zurich & EPFL, Indiana University Bloomington

Methylation Data

- many molecules influence cell life
- most important molecule: methyl group added to DNA
- methylation changes how DNA can be copied in the cell

Methylation Data

Methylation Data Format

[...0.0, 1.0, 0.6, 0.6, 0.3, 0.3 ...]

 $\in R^n_{[0,1]}$ n = 450000

Motivation: First Step Towards Solution

Motivation: First Step Towards Solution

[no, no, no, yes, no, yes, no, no]

Attack: Estimation of yes Answers

Attack: Estimation of yes Answers

Attack: Estimation of yes Answers

Attack: Estimation of no Answers

Attack Evaluation

Attack Evaluation

Defense Idea

6

Our Defense in Detail: SVT²

Our Defense in Detail: SVT²: Laplace Noise

Our Defense in Detail: SVT²: Laplace Noise

Our Defense in Detail: SVT²: Laplace Noise

Our Defense in Detail: SVT²: Noisy Comparison

Our Defense in Detail: SVT²: Noisy Comparison

Our Defense in Detail: SVT²: Noisy Comparison

Our Defense in Detail: SVT²: Output of Answer

Our Defense in Detail: SVT²: Output of Answer

Our Defense in Detail: SVT²: Privacy Budget Depleted

what is considered not to consume privacy budget

sparse vector technique (SVT): d + y < T + z? our SVT²:

$$d + y < T + z$$
 and $p + y < T + z$?

or

 $d + y' \ge T + z'$ and $p + y' \ge T + z'$?

Measuring Utility: Researcher

Measuring Utility: Attacker

Measuring Utility: Attacker

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt, Yang Zhang, Mathias Humbert, Pascal Berrang, Haixu Tang, XiaoFeng Wang, Michael Backes CISPA Helmholtz Center for Information Security, Swiss Data Science Center, ETH Zurich & EPFL, Indiana University Bloomington

