
ExSpectre

Jack Wampler, Ian Martiny, Eric Wustrow

Hiding Malware in Speculative Execution

2

Overview

Previous work used speculative execution to leak information

This work:
Use speculative execution to hide arbitrary computation

– Useful for malware or white-box applications

ExSpectre: Hiding Malware in Speculative Execution

3

Outline
● Background

– Speculative Execution

– Spectre / Meltdown

● Threat Model & Architecture

● Fundamental limits of speculative execution

– How much work can be done?

– What kinds of work can gadgets do?

● My processor can do what speculatively?!

– Techniques for obfuscating program behavior

● System Implementation

ExSpectre: Hiding Malware in Speculative Execution

4

Background:
Speculative Execution & Spectre

ExSpectre: Hiding Malware in Speculative Execution

5

Speculative Execution

ExSpectre: Hiding Malware in Speculative Execution

6

Speculative Execution

ExSpectre: Hiding Malware in Speculative Execution

7

Speculative Execution

ExSpectre: Hiding Malware in Speculative Execution

Executes instructions inside branch without conditions applied.

Results are discarded once speculation resolves… right?

8

Direct Jumps

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution

Victim Process
1) Attacker trains branch predictor.

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019

9

Direct Jumps

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution

Victim Process
1) Attacker trains branch predictor.

2) Attacker provides out of bounds index to the array.

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019

10

Direct Jumps

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution

Victim Process
1) Attacker trains branch predictor.

2) Attacker provides out of bounds index to the array.

3) Attacker exfiltrates sensitive info via side-channel

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019

11

Indirect Jumps

Spectre 2

ExSpectre: Hiding Malware in Speculative Execution

The branch predictor guesses where control flow will be redirected.

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019

12

Overview

Spectre / Meltdown use
speculative execution to Leak information

This work will use speculative execution to
Hide arbitrary malicious computation

ExSpectre: Hiding Malware in Speculative Execution

13

Hiding Computation

ExSpectre: Hiding Malware in Speculative Execution

14

Current Malware

● Packers
– Dynamic analysis can undo packing

● Triggers / Red Pill

– Static analysis can identify conditions and triggers

● Our Work: ExSpectre
– Require analyst to precisely model speculative execution

ExSpectre: Hiding Malware in Speculative Execution

15

ExSpectre Threat Model

Attacker Capabilities

✔ Install binary on target machine

✔ Influence trigger program

- Possibly remotely

Reverse Engineer Capabilities

✔ Can use static and dynamic analysis.

✗ Can’t introspect processor’s speculative state.

✗ Can’t run trigger program

ExSpectre: Hiding Malware in Speculative Execution

16

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

ExSpectre: Hiding Malware in Speculative Execution

17

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

Payload

• Executes same jump pattern

ExSpectre: Hiding Malware in Speculative Execution

18

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

Payload

• Executes same jump pattern
• CPU mis-speculates to target_fn

ExSpectre: Hiding Malware in Speculative Execution

19

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

Payload

• Executes same jump pattern
• CPU mis-speculates to target_fn
• Executes a short gadget speculatively

ExSpectre: Hiding Malware in Speculative Execution

20

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

Payload

• Executes same jump pattern
• CPU mis-speculates to target_fn
• Executes a short gadget speculatively
• Results sent to real world via side channel

ExSpectre: Hiding Malware in Speculative Execution

21

ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn

Payload

• Executes same jump pattern
• CPU mis-speculates to target_fn
• Executes a short gadget speculatively
• Results sent to real world via side channel

ExSpectre: Hiding Malware in Speculative Execution

22

How much work can be done
speculatively?

ExSpectre: Hiding Malware in Speculative Execution

23

Speculative Window

ExSpectre: Hiding Malware in Speculative Execution

24

Speculative Window

ExSpectre: Hiding Malware in Speculative Execution

25

Speculative Window

ExSpectre: Hiding Malware in Speculative Execution

26

Speculative Window

1) Different instructions have different limitations.

2) Simpler vs. more complex instructions.

ExSpectre: Hiding Malware in Speculative Execution

27

Speculative Window

H. Wong, “Measuring reorder buffer capacity,” May 2013

 The maximum number of instructions aligns with ROB size for the simplest instructions.

ExSpectre: Hiding Malware in Speculative Execution

28

Speculative Window

Cache miss resolves in ~300-750 cycles

Complex instructions

ExSpectre: Hiding Malware in Speculative Execution

29

● Cache Limit – Cache miss duration
● Signal still detectable after 80% resolution (300 cycles)

● No signal after 95% resolution (750 cycles)
● Using instructions with high CPI hit this limit first.

● ROB Limit – ROB size: 220 µops (Skylake)

We can execute ~100-150 instruction speculatively

Speculative Window

ExSpectre: Hiding Malware in Speculative Execution

30

What kinds of work can gadgets do?

ExSpectre: Hiding Malware in Speculative Execution

31

What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

ExSpectre: Hiding Malware in Speculative Execution

32

What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔AES-NI instructions

ExSpectre: Hiding Malware in Speculative Execution

33

What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔Load (in cache)

ExSpectre: Hiding Malware in Speculative Execution

34

What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)

ExSpectre: Hiding Malware in Speculative Execution

35

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)

✗ Store

What kinds of work can gadgets do?

ExSpectre: Hiding Malware in Speculative Execution

36

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)

✗ Store

✗ Syscalls

What kinds of work can gadgets do?

ExSpectre: Hiding Malware in Speculative Execution

37 ExSpectre: Hiding Malware in Speculative Execution

What kinds of work can gadgets do?

38

Emulator
 Store
 Syscall
• Maintains state
• State accessible speculatively

Emulator

ExSpectre: Hiding Malware in Speculative Execution

39

How to train your Branch Predictor

ExSpectre: Hiding Malware in Speculative Execution

40

Triggers – Spectre Variants

Spectre 2
 Indirect Branches

 Returns

Spectre 1.1
 Direct Branches

Entry point determined by training in trigger process.

Entry point determined by training in trigger process.

Entry point determined by attacker controlled data.

Benign Triggers
The trigger program doesn’t have to be complicit (e.g. – openssl)

V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks and defenses,” 2018
ExSpectre: Hiding Malware in Speculative Execution

41

Processors continue speculate
branches even while executing

speculatively.

Triggers – Nested Speculation

Tested successfully on Intel Core i5-7200U and Intel Xeon CPU E3-1270 v6

ExSpectre: Hiding Malware in Speculative Execution

42

AES-NI instructions

● Hardware supported AES Block
Encryption and Decryption

● Abbreviated Key derivation (or
partial key expansion)

Payloads - Decryption Gadgets

Incrementally decrypt a data blob

speculatively

ExSpectre: Hiding Malware in Speculative Execution

43

Implementation:
Putting it all together

ExSpectre: Hiding Malware in Speculative Execution

44

• Benign Remote Trigger

System Implementation

ExSpectre: Hiding Malware in Speculative Execution

45

• Benign Remote Trigger
• Decryption Gadget

System Implementation

ExSpectre: Hiding Malware in Speculative Execution

46

• Benign Remote Trigger
• Decryption Gadget
• Custom Emulator

System Implementation

ExSpectre: Hiding Malware in Speculative Execution

47

• Benign Remote Trigger
• Decryption Gadget
• Custom Emulator

Quickly launch reverse shell
once trigger becomes present

System Implementation

ExSpectre: Hiding Malware in Speculative Execution

48

 Emulator Exists
 Encrypted Binary
 Cache Probe

 Gadgets
 Entry Point

Analysis without Trigger

ExSpectre: Hiding Malware in Speculative Execution

49

Defenses & Analysis

ExSpectre: Hiding Malware in Speculative Execution

50

Insufficient Defenses

Spectre Defenses:
IBPB - Predictor state optionally cleared on context switch

IBRS - Predictor cleared on kernel enter/exit

STIBP - Different predictor per hyperthread

Retpoline - Software patch for Spectre II (opt-in)

Cache Coloring - but still other side channels

 ...but most are opt-in!
Attacker can choose no defenses

ExSpectre: Hiding Malware in Speculative Execution

51

Summary

● Hide core malware functionality
– Difficult for static/dynamic analysis to reverse engineer

– Implemented reverse shell with support of a small emulator

● Triggered by
– Other potentially benign / remote programs

– Input data

We use speculative execution to:

ExSpectre: Hiding Malware in Speculative Execution

52

Questions?

github.com/ewust/speculake

ExSpectre: Hiding Malware in Speculative Execution

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

