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Overview

Previous work used speculative execution to leak information 

This work: 
Use speculative execution to hide arbitrary computation

– Useful for malware or white-box applications
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Outline
● Background

– Speculative Execution

– Spectre / Meltdown

● Threat Model & Architecture 

● Fundamental limits of speculative execution

– How much work can be done?

– What kinds of work can gadgets do?

● My processor can do what speculatively?!

– Techniques for obfuscating program behavior

● System Implementation 
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Background:
Speculative Execution & Spectre
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Speculative Execution
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Speculative Execution
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Speculative Execution

ExSpectre: Hiding Malware in Speculative Execution 

Executes instructions inside branch without conditions applied.

Results are discarded once speculation resolves… right?
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Direct Jumps 

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution 

Victim Process
1) Attacker trains branch predictor.

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019
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Direct Jumps 

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution 

Victim Process
1) Attacker trains branch predictor.

2) Attacker provides out of bounds index to the array.

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019
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Direct Jumps 

Spectre 1

ExSpectre: Hiding Malware in Speculative Execution 

Victim Process
1) Attacker trains branch predictor.

2) Attacker provides out of bounds index to the array.

3) Attacker exfiltrates sensitive info via side-channel

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019
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Indirect Jumps
        

Spectre 2

ExSpectre: Hiding Malware in Speculative Execution 

The branch predictor guesses where control flow will be redirected. 

P. Kocher et. al. “Spectre attacks: Exploiting speculative execution,” 2019
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Overview

Spectre / Meltdown use 
speculative execution to Leak information 

This work will use speculative execution to 
Hide arbitrary malicious computation 

ExSpectre: Hiding Malware in Speculative Execution 
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Hiding Computation
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Current Malware

● Packers
– Dynamic analysis can undo packing

● Triggers / Red Pill

– Static analysis can identify conditions and triggers

● Our Work: ExSpectre
– Require analyst to precisely model speculative execution 
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ExSpectre Threat Model

Attacker Capabilities

✔ Install binary on target machine

✔ Influence trigger program

- Possibly remotely 

 

Reverse Engineer Capabilities
 

✔ Can use static and dynamic analysis.

✗ Can’t introspect processor’s speculative state.

✗ Can’t run trigger program 
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

ExSpectre: Hiding Malware in Speculative Execution 
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

Payload 

• Executes same jump pattern
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

Payload 

• Executes same jump pattern
• CPU mis-speculates to target_fn 
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

Payload 

• Executes same jump pattern
• CPU mis-speculates to target_fn 
• Executes a short gadget speculatively
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

Payload 

• Executes same jump pattern
• CPU mis-speculates to target_fn 
• Executes a short gadget speculatively
• Results sent to real world via side channel 
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ExSpectre Architecture

Trigger – Trains branch predictor
pattern → target_fn 

Payload 

• Executes same jump pattern
• CPU mis-speculates to target_fn 
• Executes a short gadget speculatively
• Results sent to real world via side channel 
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How much work can be done 
speculatively?

ExSpectre: Hiding Malware in Speculative Execution 
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Speculative Window
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Speculative Window
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Speculative Window
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Speculative Window

1) Different instructions have different limitations.

2) Simpler vs. more complex instructions.
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Speculative Window

H. Wong, “Measuring reorder buffer capacity,” May 2013

 The maximum number of instructions aligns with ROB size for the simplest instructions.
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Speculative Window

Cache miss resolves in ~300-750 cycles

Complex instructions
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● Cache Limit – Cache miss duration 
● Signal still detectable after 80% resolution (300 cycles)

● No signal after 95% resolution (750 cycles)
● Using instructions with high CPI hit this limit first. 

● ROB Limit – ROB size: 220 µops (Skylake)

We can execute ~100-150 instruction speculatively 

Speculative Window

ExSpectre: Hiding Malware in Speculative Execution 
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What kinds of work can gadgets do?

ExSpectre: Hiding Malware in Speculative Execution 
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What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions
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What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔AES-NI instructions
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What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔Load (in cache)
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What kinds of work can gadgets do?

✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)
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✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)

✗ Store

What kinds of work can gadgets do?
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✔ Control flow, logical, & arithmetic instructions

✔ AES-NI instructions

✔ Load (in cache)

Load (out of cache)

✗ Store

✗ Syscalls

What kinds of work can gadgets do?

ExSpectre: Hiding Malware in Speculative Execution 
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What kinds of work can gadgets do?
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Emulator 
 Store
 Syscall
• Maintains state
• State accessible speculatively

Emulator
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How to train your Branch Predictor
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Triggers – Spectre Variants

Spectre 2
    Indirect Branches

    Returns

Spectre 1.1
    Direct Branches

 
Entry point determined by training in trigger process. 

Entry point determined by  training in trigger process. 

Entry point determined by attacker controlled data.

Benign Triggers
The trigger program doesn’t have to be complicit (e.g. – openssl)

V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks and defenses,” 2018
ExSpectre: Hiding Malware in Speculative Execution 
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Processors continue speculate 
branches even while executing 

speculatively.

Triggers – Nested Speculation

Tested successfully on Intel Core i5-7200U and Intel Xeon CPU E3-1270 v6

ExSpectre: Hiding Malware in Speculative Execution 
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AES-NI instructions 

● Hardware supported AES Block 
Encryption and Decryption

● Abbreviated Key derivation (or 
partial key expansion) 

Payloads - Decryption Gadgets

Incrementally decrypt a data blob 

speculatively 
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Implementation:
Putting it all together

ExSpectre: Hiding Malware in Speculative Execution 
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• Benign Remote Trigger

System Implementation 

ExSpectre: Hiding Malware in Speculative Execution 
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• Benign Remote Trigger
• Decryption Gadget

System Implementation 

ExSpectre: Hiding Malware in Speculative Execution 
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• Benign Remote Trigger
• Decryption Gadget
• Custom Emulator

System Implementation 

ExSpectre: Hiding Malware in Speculative Execution 
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• Benign Remote Trigger
• Decryption Gadget
• Custom Emulator

Quickly launch reverse shell 
once trigger becomes present 

  

System Implementation 
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 Emulator Exists
 Encrypted Binary
 Cache Probe

  Gadgets
  Entry Point

Analysis without Trigger 

ExSpectre: Hiding Malware in Speculative Execution 
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Defenses & Analysis
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Insufficient Defenses

Spectre Defenses:
IBPB - Predictor state optionally cleared on context switch

IBRS - Predictor cleared on kernel enter/exit

STIBP - Different predictor per hyperthread

Retpoline - Software patch for Spectre II (opt-in)

Cache Coloring - but still other side channels

 ...but most are opt-in!
Attacker can choose no defenses

ExSpectre: Hiding Malware in Speculative Execution 
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Summary

● Hide core malware functionality
– Difficult for static/dynamic analysis to reverse engineer

– Implemented reverse shell with support of a small emulator

● Triggered by 
– Other potentially benign / remote programs 

– Input data

We use speculative execution to:

ExSpectre: Hiding Malware in Speculative Execution 
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Questions?

github.com/ewust/speculake

ExSpectre: Hiding Malware in Speculative Execution 
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