
YODA: Enabling Computationally Intensive
Contracts in Blockchains with Byzantine and Selfish
nodes

Sourav Das, Vinay J. Ribeiro, and Abhijeet Anand
Indian Institute of Technology Delhi

Smart Contracts

● Fair exchange of goods
● Fair public auctions

Blockchain Layer

Correctness of Contract Execution
● Verification of Contract by Re-execution

tx

Validation phase:
validate header,
and transactions

Mining phase:
try to create valid block

time

Delays mining!

Miner1

Transaction Pool Potential Block

Miner2

Validation Phase

Validates Block!

Verifier’s Dilemma: Whether to Validate Transactions or Accept them without validation?

● Limit maximum amount computation a transaction can invoke.

● BlockGasLimit in Ethereum.

● ~500k instructions per second

● Consequence of Re-executing contracts for Verification

● Need of executing large functions in Blockchain

● Playing Online Games.

● Privacy preserving computation, e.g: FHE, Zero-Knowledge protocols

● Machine Learning on Blockchain

YODA: Enabling Computationally intensive contracts in Blockchains with

Byzantine and Selfish nodes.

● How to deal with Verifier’s Dilemma?

● Can’t Execute large (Computationally Intensive) functions/ smart contracts

Outline
● Introduction and Motivation
● System Model
● YODA Overview
● MiRACLE
● RICE
● Evaluation

System Model

● Definitions
○ Computationally Intensive Transactions (CITs) invoke functions that are

larger than Block Limit Threshold.

○ non-CIT: Transactions that are not CITs.

○ YODA executes CITs off-chain, i.e only by a subset of nodes

○ non-CITs are executed on-chain i.e by all miners. Identical to legacy contracts

● Blockchain consists a set of nodes, miners or non-miners

● <50% of the nodes in the system are Byzantine.

● Underlying blockchain guarantees Correctness and Availability

Transactions are Executed
Correctly

Transactions get Included
within bounded delay

What does off-chain Execution mean?

YODA’s Off-Chain solution

non-CITs CITs

Execution Set (ES)

● Requirements from YODA

Nodes

Miners

solution

Stake Pool (SP)
Miners

...

● error Probability

● Small ES
● 50% adversarial tolerance

How does YODA meet these requirements?

Volunteer for CIT execution
(by depositing Stake)

Sample

Sample

Byzantine and Selfish Honest nodes in SP
● Honest nodes: always submit correct execution result of CITs
● Consider a Naive Solution using sampling

Best |ES|

Can we have an Algorithm which automatically adapts to f?

Sample

MiRACLE Algorithm via Examples

SP

Cryptographic
Sortition

ES

Case I

Case II

Case III

Case II: MiRACLE has to identify correct solution from and .

MiRACLE: Case II

Two Hypothesis: is correct solution is correct solution

Compute Likelihood:

YES

NO

SP

Compute Likelihood:
YES

NO

Round 2

Round 3...

If

MiRACLE terminates in expected rounds

NO

YES

MiRACLE: Case III

Round 1

Round
2

Round i

MiRACLE: Theoretical Results

● Terminates with only single solution
● Best strategy for adversary is to submit single solution

● Terminates with correct solution with Probability

Outline
● Introduction and Motivation
● System Model and Related Work
● YODA Overview
● MiRACLE
● Selfish nodes in SP (RICE)
● Evaluation

Byzantine and Selfish Honest nodes in SP

● Selfish Node: seeks to maximize (reward for computation - cost of computation)

● Skip computation if they can guess the result beforehand

■ Using information available in the Blockchain

■ Colluding with other ES nodes.

● MiRACLE is not sufficient with Selfish nodes

NO
Round 1

Round 2
● Why is this an issue?

CICs are Deterministic.

It increases the probability of accepting incorrect solution.

● If is an incorrect digest?

RICE: Randomness Inserted Contract Execution

Solution of CIT

round number● ES nodes submit a solution

Round-dependent pseudorandom value

First instruction

executed

Last instruction

executed (Unknown apriori)

time;

1 instruction = 1 time unit

Round 2,

Round 1,

Update seed based on intermediate states

1 ……….. T (last instruction)

...…

Digest of intermediate state

Choosing Indices in RICE
● Keep the number of updates small.

● Fixed size interval (k), O(T) updates

k k k k
……. k

1 2 4 8
.....

● Interval doubling after every step, updates

● YODA considers interval of size

...... ….. ...

● updates, last gap

● Gap between last update and T could be

Outline
● Introduction and Motivation
● System Model and Related Work
● YODA Overview
● MiRACLE
● Selfish nodes in SP (RICE)
● Evaluation

CICs in YODA

Additionally in paper.

● Security properties on MiRACLE and RICE
● Collusion among ES nodes from same rounds
● Fair reward mechanism
● Incentive compatibility of YODA (-Nash equilibrium)
● Implementation and Evaluation details

Thank You
souravdas1547@gmail.com

Putting it all together on a blockchain

SP
ES

ES

...

MiRACLE

tx1

tx2

tx3
tx1 tx2 tx3

Proof of ES selection

...

Final CIC state

MiRACLE (Pseudocode)

