
Panagiotis Ilia, Michalis Polychronakis, Evangelos Markatos,
Sotiris Ioannidis, Giorgos Vasiliadis

Panagiotis Papadopoulos

Abusing Web Browsers for Persistent and
Stealthy Computation

WE
B

Nowadays...
increasing reliance on the web

sophisticated web browsing software

integrated operating system for web applications

abundance of JS APIs and sensors (e.g., gyroscope, location, battery status)

publishers transfer parts of the critical computations on the user side
(minimizes latency, better user experience and usability, scalability of the service)

2Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Nowadays...

in-browser running malicious code (e.g., cryptojacking)

users remain oblivious to the performed operations

publishers are considered by default trusted to run any JS code
on the user-side without restrictions (even from third-parties)

publishers transfer parts of the critical computations on the user side
(minimize latency, better user experience and usability, scalability of the service)

3Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Threat Model

Publishers can infect users:

● Intentionally:

○ malicious or “shady” website serves directly the malicious payload to visitors

● Unintentionally:

○ hijacked/compromised website

○ website that includes a third party library which becomes compromised

○ malicious third-party content that it dynamic loaded in iframes*

(e.g., through real-time ad auctions).

* Browser as Botnet, or the Coming War on Your Web Browser

https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-browser-be920c4f718

4Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

On the bright side...
malicious JS execution is constrained chronologically to the

lifetime of the browser window or tab

Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

This is not the case nowadays...
to demonstrate that we present MarioNet

Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

MarioNet
● a system that enables a remote attacker to control

users’ browsers and hijack device resources

● infected browser joins a centrally orchestrated botnet which can
launch a wide variety of distributed attacks

● persistent and stealthy: attackers continue having control of the victim’s browser
even after the user browses away from the website

● leverages only off-the-shelf technologies provided by HTML5

7Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

MarioNet: Basic ingredients

● Service Worker:
○ non-blocking (i.e., fully asynchronous) module,

○ resides between the webpage and the publisher’s web server:

○ once registered and activated, runs in a separate thread in the background (no DOM access)

○ can intercept and handle network requests

(e.g., is used for programmatically managing the caching of responses)

● WebSocket:
○ persistent full-duplex communication channel over a single TCP connection.

● Depending on the attack scenario:
○ WebRTC, high-resolution performance timers, Cross-Origin Resource Sharing (CORS)

8Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

MarioNet: Key roles
1. Distributor:

○ a website under the attacker’s control that delivers to users along with the regular content of
the webpage, the Servant component

2. Servant:
○ the in-browser component embedded in a Service Worker
○ runs in a separate process: continues to operate even after its parent tab closes
○ establishes a connection with Puppeteer for heartbeats and receiving malicious tasks

3. Puppeteer:
○ the remote C&C component that sends tasks to the Servant to be executed
○ sets the attack’s target, orchestrates the botnet

9Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

MarioNet: Overview

10Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Servant

Servant

Basic Characteristics

1. Isolation:
○ MarioNet's operations are independent from the browsing session's thread/process
○ heavyweight malicious computations cannot affect tab's functionality

2. Persistence:
○ MarioNet’s operations are detached from any ephemeral browser tabs

○ browser remains under attacker’s control for longer than a website visit (<1 min*)

3. Stealthiness:
○ Servant-Puppeteer communication channel is not-detectable by browser extensions**

○ operations are throttled based on system's recourse utilization (not-detectable by user)

*How long do users stay on web pages? https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
** Bashir et al., How Tracking Companies Circumvented Ad Blockers Using WebSockets

11

Attack Scenarios
After infection Puppeteer can instrument
infected browsers to perform attacks like:

a) DDoS

b) cryptocurrency mining

c) distributed password cracking

d) illicit file hosting or anonymized
communications

12Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Target

Puppeteer

Botnet

do
 v
is
it
 T
ar
ge
t

visit
 Targ

et

Botnet

do
 c
om
pu
te

re
tu
rn
 r
es
ul
t

Puppeteer

(a) (b)

Performance Evaluation

● Abuse of network resources: DDoS ● Abuse of computation power:
Distributed 10-digit Password Cracking

Rate of asynchronous outgoing HTTP requests for different
browsers and network connections in the DDoS attack
scenario. An orchestrated DDoS attack in MarioNet can
achieve rates of up to 1632 reqs/sec per infected device.

Cracking speed of different browsers in the distributed password-
cracking scenario. A single infected browser can bruteforce
around 500K MD5 hashes/sec or 300K SHA-256 hashes/sec.

13Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Countermeasures
● Restricting or Disabling Service Workers:

○ breaks important functionality of apps like Google Docs, Gmail, LinkedIn, Whatsapp web client
(e.g., periodic background synchronization, push notifications, caching, message relaying
across pages, offline fallback, user-side load balancing)

● Whitelists/Blacklists:
○ Service Workers will be blocked, unless the domain of origin is whitelisted.

● Click to Activate:
○ require user’s permission before registering a service worker (like Push Notifications)

● Host-based approaches:
○ Signature-based Detection
○ Behavioral Analysis and Anomaly Detection

14Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Conclusion

● Malicious code execution is not constrained to the lifetime of the browser session

● We present MarioNet:
○ Ingredients: Service Workers, WebRTC, WebSockets, CORS

○ a multi-attack framework

○ allows persistent and stealthy bot operation through web browsers

○ Malicious payload is not attached to any browsing session
and thus withstands tab crash/closing.

● We launch and evaluate various possible attack scenarios on top of MarioNet:
(e.g., DDoS, Distributed password cracking, cryptomining)

15Panagiotis Papadopoulos ~ panpap@csd.uoc.gr

Persistency and fixes (update)
1. Issue and fixes were made public in November 20181,2

2. first fixes were already integrated since end of July
○ restricting the number of events (e.g., fetch, push, sync, etc.) SWs can receive

3. Currently, SW gets only one event and then gets terminated
4. SW stays alive only for ~1min after the user navigates away from the website

○ limits the lifetime of an infected user.

More info: https://www.ics.forth.gr/dcs/index_main.php?l=e&c=735

1 https://bugs.chromium.org/p/chromium/issues/detail?id=805496&can=1&q=Type%3DBug-Security%20serviceworker&sort=-
modified&colspec=ID%20Pri%20M%20Stars%20ReleaseBlock%20Component%20Status%20Owner%20Summary%20OS%20Modified
2 https://bugzilla.mozilla.org/show_bug.cgi?id=1432846

16

https://www.ics.forth.gr/dcs/index_main.php?l=e&c=735
https://bugs.chromium.org/p/chromium/issues/detail?id=805496&can=1&q=Type%3DBug-Security%20serviceworker&sort=-modified&colspec=ID%20Pri%20M%20Stars%20ReleaseBlock%20Component%20Status%20Owner%20Summary%20OS%20Modified
https://bugzilla.mozilla.org/show_bug.cgi?id=1432846

Panagiotis Papadopoulos

Abusing Web Browsers for Persistent and
Stealthy Computation

WE
B

