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Location (Meta)Data & Services

% Fine-grained location information collected by most modern devices
> Smartphones
> Wearables

% Enables a range of novel functionality
> Additional microblogging context
> Enhance situational awareness
> Enrich user experience
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What about privacy?

% Pose significant privacy risks for users

% Users’ key location inference can lead to:
> Deanonymization
> Physical threats, stalking

% Other location points can lead to:
> User profiling
> Inference of sensitive traits (e.g. health issues)
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Prior Work & Motivation

X/

% Multiple studies on home and work inference using location data
> Cheng et al. ICWSM ’11

> Cho et al. KDD ‘11

> Efstathiades et al. ASONAM ‘15

> Huetal. ICDMW ‘15 etc.
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% Coarse granularity in their inference (e.g. zip code, city)
> Could not highlight the true extent of the privacy risks

% Automated sensitive information inference remains unexplored
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GPS Coordinates and Where to Find Them

% Our case study is on Twitter
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GPS Coordinates and Where to Find Them

% Our case study is on Twitter

&he New Hork Cimes
Your Apps Know Where You Were Last
Night, and They’re Not Keeping [t Secret

Hundreds of Bounty Hunters Had Access to
AT&T, T-Mobile, and Sprint Customer
Location Data for Years

Documents show that bail bond companies
used a secret phone tracking service to make
tens of thousands of location requests.

In January, Motherboard revealed that AT&T, T-Mobile, and Sprint were

By JENNIFER VALENTINO-DeVRIES, NATASHA SINGER, MICHAEL H. KELLER and AARON KROLIK  DEC. 10, 2018

The millions of dots on the map trace highways, side streets and bike trails
— each one following the path of an anonymous cellphone user.

selling their customers’ real-time location data, which trickled down through a
complex network of companies until eventually ending up in the hands of at
least one bounty hunter. Motherboard was also able to purchase the real-time

One path tracks someone from a home outside Newark to a nearby Planned
location of a T-Mobile phone on the black market from a bounty hunter source Parenthood, remaining there for more than an hour. Another represents a
for $300. In response, telecom companies said that this abuse was a fringe
case.

person who travels with the mayor of New York during the day and returns to
Long Island at night.

In reality, it was far from an isolated incident.
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Dataset y

s Twitter’s public Streaming API to collect seed UIDs
> US mainland
> 308,593 users

7/

% Collected each user’s timeline
> Up to 3,200 tweets
% Consider only official Twitter apps and Foursquare
> 87,114 users with geotagging activity
> 15,263,317 geotagged tweets
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Analysis & Evaluation Datasets

< Two subsets

> Top-6K: ~6K users with the most geotagged tweets
> Low-10K: ~10K random users with 10 - 250 geotagged tweets

% Allows to study the differences between prolific and restrained users
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Location Clustering

% 1%tlevel clustering
> ArcGIS API maps coordinates to postal address
m Cache results to reduce redundant API calls

< 2" |evel clustering
> Certain 15tlevel clusters correspond to the same location
m GPS errors
m User leaving/arriving at location
m Precision of geocoding API

kostasdrk@ics.forth.gr



Location Clustering

X/

< 2" |evel clustering
> A larger cluster is surrounded by smaller ones

> Merge secondary clusters with dominant one using DBSCAN
> Enhances cluster’s “signal”

kostasdrk@ics.forth.gr
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Ground Truth Datasets

X/

% Manual and strict workflow to generate accurate ground truth
> 2 independent annotators
> Discarded ambiguous users

7/

% Inspected clusters matching key phrases and the 10 largest clusters
> “At home”, “This job” etc

/7

% Final ground truth datasets:

> Home-Top: 1,004 users (Work-Top: 298 users)
> Home-Low: 1,043 users (Work-Low: 92 users)

kostasdrk@ics.forth.gr
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Key Location Inference

% Process spatiotemporal (meta)data
> Social-graph and content agnostic

% Guided by common societal and legislative norms in the US and EU
> E.g., 8 hour work shifts

kostasdrk@ics.forth.gr
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Home Inference

Activity from Home Weekend Period

% Expected behavior

> Repeated activity
> No specific time frame

% Our heuristic
> Only consider weekends
>  Select 5 most active clusters
> Pick cluster with the widest time frame

Time of day

(K



Work Inference

Activity from Home = Activity from Work 4 Weekend Period |

% Expected behavior
>  Some repeated activity
>  Well defined time frame

% Our heuristic
> Consider entire weeks
>  Select 5 most active clusters
> Dynamically identify the dominant time
frame (DTF) for each cluster
> Pick most active cluster (entire weeks)
during the DTF
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Key Location Inference Evaluation

Dataset Users Inferred Clusters Precision
Home-Top 1004 926 92.2%
Home-Low 1043 969 92.9%
Work-Top 298 164 55%
Work-Low 92 53 57.6%

kostasdrk@ics.forth.gr
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Comparison to Prior Work

% Replicate 11 approaches for home and 2 for work inference
> Run them on our ground truth
>  Apply 1%-level clustering on prior approaches
m Faithful to their original design

% Outperform all prior approaches
> Besthome: 73.3% [Hu et al. “15], +18.9% improvement
> Best work: 48.9% [Efstathiades et al. “15], +8.7% improvement

kostasdrk@ics.forth.gr
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What more can we infer from a user’s
location history?
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Identifying Highly Sensitive Places

% ldentify Potentially Sensitive Clusters (PSCs)
> In close proximity to sensitive venues
% Collect venue information from Foursquare
> Within 25m from cluster’s midpoint
> Categories pertaining to health, religion and sex/nightlife

% Determine whether the user actually visited them
> Proximity != Visiting the venue
> Need to increase confidence

kostasdrk@ics.forth.gr

https://www.flaticon.com
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Identifying Highly Sensitive Places

% Content-based corroboration
> Manually compiled wordlist for each category
> 3 most significant terms (tf-idf) matched against the respective wordlist
m If there is a match, the user was likely visiting that venue

X/

¢ Duration-based corroboration

>  Repetitiveness and duration of visits

> Consider clusters with activity spanning hours or even days
> Exclude clusters with short duration (passer-by cases)

% Location metadata might disclose more than the user intended

kostasdrk@ics.forth.gr



Identifying Highly Sensitive Places

Location metadata magnifies privacy loss

¢ Duration-based corroboration
>  Repetitiveness and duration of visits
> Consider clusters with activity spanning hours or even days
> Exclude clusters with short duration (passer-by cases)

% Location metadata might disclose more than the user intended

kostasdrk@ics.forth.gr
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Potentially Sensitive Clusters

Religion
Sex/Nightlife
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Content-Based Corroboration

% Ground truth users with PSCs: 1,454 (6,483 PSCs)

+» Detected sensitive clusters: 545

> Manually verified by inspecting all clusters including a wordlist term
> Precision: 80.36%
> Recall: 93.79%

% When applied on the main datasets:
> Top-6K: 1,512 detected (21,863 PSCs)
> Low-10k: 474 detected (6,918 PSCs)

kostasdrk@ics.forth.gr
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Duration-Based Corroboration

« Users with DB clusters:

> Home-Top: 691 (1,699 clusters)
> Home-Low: 205 (276 clusters)

% ~53% and ~44% of the CB clusters also detected by the DB approach

> Both techniques can be combined for higher confidence

% When applied on the main datasets:
> Top-6K: 7,020 detected clusters

> Low-10k: 2,337 detected clusters

kostasdrk@ics.forth.gr
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Twitter’s Policy & Historical Data

% Prior to April 2015:

> Apps included coordinates even in coarsely tagged tweets
> Only accessible via the API

% Since April 2015:
> Privacy-respecting policy
> Users must opt-in to add precise location information

% This historical data remains publicly accessible through the API

kostasdrk@ics.forth.gr
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User Behavior Through Time
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% Significant decrease in geotagged tweets after April 2015
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Impact of Historical Data

Dataset Date Users Homes Coverage

Home-Top Release 602 333 35.96%
Home-Top  +4 Weeks 155 68 7.34%

Home-Low Release 394 239 24.66%
Home-Low  +4 Weeks 116 62 6.39%

% 1543% and 11.12% of users had geotagged tweets 4 weeks later
% Precision drops to 43.87% and 53.44%

kostasdrk@ics.forth.gr
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JELCEVEVE

% Designed novel techniques to infer:
> Users’ key locations, with high precision and granularity
> Users’ sensitive information

% Implemented LPAuditor, a composite system that automates these attacks
% Highlighted the true extent of the privacy risks due to (public) location metadata
% Provided an extensive, comparative evaluation to prior approaches

% Revealed and studied the impact of Twitter’s past invasive policy

kostasdrk@ics.forth.gr 27



Thank you!

https://www.cs.uic.edu/~location-inference/

kostasdrk@ics.forth.ar




Contributions

% Techniques for inferring user home & work locations
> High accuracy
> Fine granularity (postal address)

% Novel approaches for inferring sensitive user information
s Design LPAuditor, a system that automates the attacks

% Investigate Twitter’s past invasive policy and how it impacts users

kostasdrk@ics.forth.gr
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Number of Clusters
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% ~28% have less than 100 clusters < ~11% have less than 6 clusters

2  50% have more than 140 clusters <  50% have more than 21 clusters
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Tweets from Top Clusters

Top 1 cluster
Top 3 clusters
Top 5 clusters =

Top 1 cluster
Top 3 clusters =
Top 5 clusters ——

c
o
=
(&)
©
S
—
o
>
=
L
>
=
>

of users (CDF)

04 0.6 0.8
Percentage of user’s tweets

% ~40% of the users, have more than half of their tweets in the top cluster
% ~48% have more than 70% of their tweets in their top 5 clusters
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Key Location Inference - Main Datasets
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% The inferred clusters’ rank distribution matches our groundtruth evaluation
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Comparison to Prior Work - Analytics

Heuristic Description

Dataset

Top

Low

Proposed by

Cluster with the highest number of tweets

72.3%

67.8%

[19], [20], [34], [39]

Most tweets between 20:00-8:00

72.1%

66.4%

[45]

Most tweets between 24:00-7:00

69.3%

54.7%

3]

Last destination of the day (before 3am)

73.3%

64.8%

Last destination of the day (w/o days with tweets between 24:00-7:00)

71.4%

64.4%

[34], [39]

Weighted PageRank for destinations

44.1%

26.4%

Weighted PageRank for origins

37.5%

20.9%

Most popular cluster in terms of unique days, during the Rest
(2:00-7:59) and Leisure (19:00-01:59) time frames

73.1%

64.9%

WMFV (best reported time frame: 24:00-5:59)

65%

50.9%

W-MEAN (best reported time frame: 24:00-5:59)

0.6%

14.7%

W-MEDIAN (best reported time frame: 23:00-5:59)

15.6%

24.5%

LPAuditor’s Home detection without 2" level clustering

73.7%

69.3%

this paper

1
2
3
)
5
6
7
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9
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13

LPAuditor’s Home detection

92.2%

92.9%

this paper

Most popular cluster in terms of unique days, during the Active time
frame (e.g., working hours, 08:00-18:59)

33.2%

48.9%

[25]

Cluster with the second highest number of tweets

18.5%

22.8%

LPAuditor’s Work detection without 2" level clustering

32.2%

30.4%

this paper

kostasdrk@ics.forth.gr

LPAuditor’s Work detection

55%

57.6%

this paper




Clusters’ Size
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~67% of PSCs have a single tweet
Only ~4% have 10 or more

Power-law distribution
Smaller clusters are important from a

privacy perspective
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% %
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Content-Based Corroboration - Analytics

kostasdrk@ics.forth.gr

Home-Top Home-Low Total

Users in Dataset
PSCs
Users w/ PSCs

Guessed Clusters (CB)
Users w/ CB Clusters

True Positive (TP)
False Positive (FP)
False Negative (FN)

Precision (TP/TP+FP)
Recall (TP/TP+FN)
F-Score

79.31%
93.63%
85.87%

1,043
1,090
516

86.41%
94.59%
90.31%

2,047
6,483
1,454

80.36%
93.79%
86.55%
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Duration-Based Corroboration - Analytics

Home-Top Home-Low Top-6K Low-10K

Visited Clusters (DB) 1,699 276 7,020 2,337
e Medical 1,307 194 5,193 1,626
e Religion 245 56 1,176 493

e Sex/nightlife 147 26 651 218
Users w/ DB Clusters 691 205 5.012 1,672

Common CB/DB Clusters 53.44% 44.44% 53.9% 47.25%
Users w/ CB/DB Clusters 86.89% 597 2% 86.26% 65.88%

kostasdrk@ics.forth.gr 36



User Behavior Through Time

Dataset Before 4/2015 After 4/2015

All tweets 24.98%
Coarse-grained tweets 99.9%

% 35-fold reduction in geotagged tweets

kostasdrk@ics.forth.gr
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Impact of Historical Data

App release - - * App release -
Home-Top — Work-Top —
Home-Low — Work-Low —

% ~56% and ~68% posted last from home right before the release dates
% Few users kept posting geotagged tweets afterwards

kostasdrk@ics.forth.gr
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Performance Evaluation

O/
L %4
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Randomly selected 1k users

Tweet collection in less than 20s for 98%
of users

Venue collection up to 6s for half the users
Clustering up to 35s for half the users

Total time

> Less than 52s for half the users

> 95% of users can be processed
within 6 minutes

Tweet Collection
Venues Collection -
Total Clustering
Total —

Home Inference
Work Inference
PSC Inference
2nd-lev. Clustering

10 100
Time (ms)
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Future work

% Tune our approaches on areas with different societal and legislative norms
% Apply on different data sources (e.g. wearables)
% Investigate differences in rural vs urban areas

% Explore the more recent PO/ tag and how it can be exploited to infer sensitive
user information

kostasdrk@ics.forth.gr
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