
What Storage? An Empirical Analysis of
Web Storage in the Wild

Zubair Ahmad
Univ. Ca’ Foscari Venezia

zubair.ahmad@unive.it

Samuele Casarin
Univ. Ca’ Foscari Venezia

862789@stud.unive.it

Stefano Calzavara
Univ. Ca’ Foscari Venezia & OWASP

stefano.calzavara@unive.it

web browsers, anecdotal evidence based on previous
web measurements suggests that web storage is still far
from the popularity of cookies. Remarkably, contrary to
cookies, web storage also received only limited attention
by the security and privacy community so far. This is
concerning, because the web storage functionality is
reminiscent of traditional first-party cookies, hence it
can be employed to implement web authentication [5]
or to track users across third parties [6], all uses that
deserve careful scrutiny. In the present paper, we take
a first step to improve our understanding of the usage
of web storage in the wild. In particular, we perform an
empirical analysis of web storage information set by
popular websites based on dynamic taint tracking and
an automated classification of the collected information
flows. Our analysis uncovers several uses of web storage
in the wild, for which we discuss relevant security and
privacy implications.

Contributions: To sum up, in the present paper,
we make the following contributions:

1) We implement a dynamic taint tracking engine
for JavaScript based on Jalangi [16] and we
configure it to detect information flows involv-
ing the Web Storage API (Section III).

2) We perform an empirical study to collect in-
formation flows on live sites and shed light
on the key characteristics of the use of web
storage in the wild. Our analysis is based on an
automated classification of the detected infor-
mation flows along different axes (Section IV).

Remarkably, our analysis shows that web storage
is routinely accessed by third parties, including known
web trackers, who are particularly eager to have both
read and write access to persistent web storage informa-
tion. This motivates the need for further research on the
security and privacy implications of web storage content
by our community.

II. BACKGROUND

We provide below a brief review of the technical
ingredients required to understand the present paper. We

Abstract—In this paper we perform the first empirical
analysis of the use of web storage in the wild. By using
dynamic taint tracking at the level of JavaScript and by
performing an automated classification of the detected
information flows, we shed light on the key characteristics
of web storage uses in the Tranco Top 5k. Our analysis
shows that web storage is routinely accessed by third par-
ties, including known web trackers, who are particularly
eager to have both read and write access to persistent web
storage information. This motivates the need for further
research on the security and privacy implications of web
storage content.

I. INTRODUCTION

Modern web applications increasingly make use of
JavaScript to provide an improved user experience,
similar to traditional desktop applications. The more
the web application logic is pushed from the server
to the client, however, the more sensitive data have to
be handled at the client side rather than at the server
side. Unfortunately, the traditional approach to handle
client-side storage on the Web, i.e., HTTP cookies [3],
suffers from significant shortcomings: cookies are lim-
ited in size, have an unconventional semantics and are
inconvenient to access programmatically. The HTML5
standard thus introduced the Web Storage API [1],
which retains the intuitive flavour of cookies, while ad-
dressing their most relevant shortcomings. In particular,
the Web Storage API offers a simple key-value view
of client-side storage: web applications can store in the
browser a value v bound to a key k and later retrieve v
again by means of k. This approach offers a convenient
programming abstraction with a clean semantics, while
offering much enlarged storage capabilities.

Although the Web Storage API has been around for
a few years now and is fully supported by all major

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2022
28 April 2022, San Diego, CA, USA
ISBN 1-891562-78-9
https://dx.doi.org/10.14722/madweb.2022.23005
www.ndss-symposium.org

assume familiarity with the basic functionality of the
web platform, e.g., basics of the HTTP protocol, HTML
and JavaScript.

A. Same Origin Policy

The Same Origin Policy (SOP) is the baseline de-
fense mechanism of web browsers, which enforces a
strict separation between content served by different
origins, i.e., combinations of protocol, host and port. For
example, scripts running in a page fetched from https://
www.foo.com cannot access the DOM of a page fetched
from https://www.bar.com. SOP mediates both read and
write accesses, thus acting as the security cornerstone to
grant confidentiality and integrity on the Web. However,
when a page at https://www.foo.com includes a script
from a different origin like https://www.bar.com, the
script inherits the origin of https://www.foo.com and is
executed with the corresponding privileges.

B. Web Storage

The Web Storage API offers two different facilities,
called local storage and session storage respectively.
Both types of storage are protected by SOP and have
similar access interfaces, with the most notable differ-
ence being related to the expiration of the stored content.
While content in the local storage persists indefinitely,
content in the session storage is purged when the
browser (or tab) is closed. We show an example use of
session storage below: local storage can be used just by
replacing sessionStorage with localStorage.

1 sessionStorage.setItem('name', 'alice');
2 var n = sessionStorage.getItem('name');
3 // next line prints "My name is alice"
4 console.log("My name is " + n);

In the following we use the term “web storage” to
refer to both local storage and session storage when the
distinction is immaterial to the discussion. Similarly,
in the textual discussion, we just write setItem or
getItem to abstract from the specific web storage
object where the method is invoked.

III. DYNAMIC TAINT TRACKING

We present the dynamic taint tracking engine that
we developed to study the most prominent uses of web
storage in the wild. After reviewing the motivations and
high-level ideas of the proposed solution, we discuss the
key technical details of our implementation.

A. Motivations and Overview

Contrary to cookies, which are normally set via
HTTP headers and then automatically attached by the
browser to specific network requests, web storage can

only be read and written via JavaScript. This means
that one cannot monitor the use of web storage just
by inspecting network traffic, but has to deal with
the complexity of JavaScript to reconstruct valuable
information. In particular, we are interested in detecting
information flows involving the Web Storage API, i.e.,
data flows that (i) start by reading from the web storage,
or (ii) end by writing into the web storage. Flows
of the former type may breach the confidentiality of
web storage content, while flows of the latter type may
compromise its integrity. We thus leverage dynamic
taint tracking as a standard approach for our principled
investigation.

Taint tracking captures explicit flows of information,
i.e., data dependencies rather than control flow depen-
dencies, which often leads to increased practicality [15],
[18]. Taint tracking operates by introducing a taint when
reading from a sensitive source of information and prop-
agating it across different operations, until it reaches a
sink, where a potential security issue is detected. For
example, consider the following code snippet:

1 var n = sessionStorage.getItem('ccn');
2 var s = "Credit card number is: " + n;
3 var xhr = new XMLHttpRequest();
4 xhr.open('GET', '//foo.com/leak.php');
5 xhr.send(s);

Here, the variable n is tainted at line 1 after reading
from the session storage. The variable s is then tainted
at line 2, because it is computed by concatenating a
tainted value to an untainted string, hence the value of
s depends from tainted data. Finally, at line 5 we detect
that a tainted value is written into a sink, thus detecting
a potential confidentiality violation.

Note that detection is performed at runtime, because
JavaScript is a challenging language for static analysis.
In particular, we target an automated measurement on
live sites in this paper, hence we prefer a dynamic anal-
ysis which is naturally resilient to obfuscated/minified
code that may occur in the wild.

B. Technical Details

Our dynamic taint tracking engine is a complex
yet relatively standard solution based on existing tech-
nologies and the extensive research line on information
flow control [14]. In particular, we leverage the Jalangi
framework for JavaScript instrumentation [16]. Jalangi
operates via a source-to-source transformation, aware
of all the dynamic features of JavaScript, which inserts
callbacks for all the main operations performed by
the JavaScript interpreter. Analysis developers can thus
customize the callbacks to track different information at
runtime and use it appropriately.

The implementation of our dynamic taint tracking
engine follows the approach proposed in Ichnaea [12].

2

1 // Line 1
2 readvar('sessionStorage'); // push taint (false) for variable 'sessionStorage'
3 readproperty('obj2', 'getItem'); // push taint (false) for property 'getItem' of 'obj2'
4 // note: 'obj2' is the object ID of 'sessionStorage'
5 push(false); // push taint (false) for literal 'ccn'
6 push(false); // push taint (false) for receiver object 'obj2'
7 // native function call
8 pop(); // pop taint (false) for receiver object obj2'
9 pop(); // pop taint (false) for first argument (string 'ccn')

10 pop(); // pop taint (false) for the called function
11 // since getItem is a source, taint the top of the stack and propagate it to variable 'n'
12 readret(); // push taint (true) for the return value
13 writevar('n'); // store taint (true) for variable 'n' (without pop)
14 pop(); // pop taint (true) at the end of expression
15

16 // Line 2
17 push(false); // push taint (false) for string 'Credit card number is: '
18 readvar('n'); // push taint (true) for variable 'n'
19 // the taint is propagated to the top of the stack (result of '+') and into variable 's'
20 binaryop('+'); // apply binary '+' operator and propagate taint (true)
21 writevar('s'); // store taint (true) for variable 's' (without pop)
22 pop(); // pop taint (true) at the end of expression
23

24 // Line 5
25 readvar('xhr'); // push taint (false) for variable 'xhr'
26 readproperty('obj19', 'send'); // push taint (false) for property 'send' of 'obj19'
27 // note: 'obj19' is the object ID of 'XMLHttpRequest'
28 readvar('s'); // push taint (true) for variable 's'
29 push(false); // push taint (false) for receiver object 'obj19'
30 // native function call
31 pop(); // pop taint (false) for receiver object 'obj19'
32 // the taint reaches a network sink, hence the tool logs the information flow
33 pop(); // pop taint (true) for first argument (variable 's')
34 pop(); // pop taint (false) for the called function
35 readret(); // push taint (false) for the return value
36 pop(); // pop taint (false) at the end of expression

Fig. 1. Example of abstract machine code for taint tracking

In particular, the instrumented JavaScript preserves the
semantics of the original JavaScript, while running an
abstract machine to track information flows in parallel.
The abstract machine manipulates a stack of abstract
values that reflect the taints of values on the runtime
stack of the original JavaScript program, while also
maintaining maps that associate abstract values with
local variables and object properties. We do not present
a full formal description of the abstract machine for
space reasons (and also because it largely follows Ich-
naea [12]), but we provide an example to clarify how
it operates. Figure 1 shows the abstract machine code
generated for the previous example; we only show the
instructions generated for lines 1, 2, 5 of the original
code, because lines 3 and 4 are uninteresting for taint
tracking purposes.

Some of the fundamental instructions of the abstract
machine are employed here: push and pop to access
the stack, binaryop to propagate taints in binary
operations, readvar and writevar to load and
store the taintedness of variables, readproperty and
writeproperty to load and store the taintedness of
object properties, and readret to load the taintedness

of the return value of a function call. At line 1 of
the original code, after calling the function getItem,
which is a source, the instruction readret pushes
true onto the stack to track that the return value is
tainted. At line 2, the ’+’ binary operator combines a
literal value, that is always untainted, with the tainted
value generated at the previous line; in this case, the
taints of the operands, which are the two topmost
elements of the stack, are joined and propagated to the
result of the expression, hence true is pushed on top
of the stack to track that such value is tainted. Finally,
at line 5, the tainted value computed at line 2 is passed
as argument when invoking the function send, which
has been defined as a sink, therefore the tool reports the
information flow from the function call to getItem at
line 1 to this network sink.

IV. WEB MEASUREMENT

We now explain how we performed our empirical
measurement in the wild and we report on the most
relevant findings of our study.

3

TABLE I. LIST OF SOURCES AND SINKS USED FOR TAINT TRACKING

Class Details

Sources

Cookies document.cookie
Current URL document.URL, location, window.location, document.location
Navigator navigator.geolocation, navigator.language, navigator.platform, navigator.userAgent
Network XMLHttpRequest (input)
Web storage localStorage.getItem, sessionStorage.getItem

Sinks
Cookies document.cookie
Network XMLHttpRequest (output), navigator.sendBeacon, src attribute of HTML element
Web storage localStorage.setItem, sessionStorage.setItem

A. Methodology

We use the developed dynamic taint tracking engine
to automatically identify information flows involving
the Web Storage API in the top 5k domains of the
Tranco list [13] generated on December 14th, 2021.1
More formally, an information flow involves the Web
Storage API if and only if: (i) it starts from a call to
the getItem method and ends into a sink, or (ii) it
starts from a source and ends into a call to the setItem
method. We refer to the former as confidentiality flows
and to the latter as integrity flows. Table I reports the
different sources and sinks considered in our analysis,
largely inspired by previous web measurements based
on information flow control [7], [17]. Note that the web
storage was largely ignored as source or sink in previous
work, to the best of our knowledge.

We use the Puppeteer library2 to drive our instru-
mented browser to each domain in the Tranco list,
leaving 60 seconds to render the HTML content after
connecting. For each domain, we leverage taint tracking
to collect all the information flows involving the Web
Storage API. To better understand the use of web
storage, we then perform an automated classification
of the collected information flows. This is a non-trivial
task, that we dealt with after a preliminary manual
investigation to understand the nature of the collected
data. In particular, we categorize the flows along differ-
ent axes, all fully amenable to automation, as described
in the following.

a) Confinement: A first relevant aspect we inves-
tigate is related to the origins involved in the flows. We
say that a flow is internal if and only if it is confined
within a single origin. In other words, these flows do
not include network sources or sinks (cf. Table I), unless
network communication only involves the same origin
where the flow is detected. The other flows, which
we call external, are more interesting from a security
and privacy perspective, because they involve third
parties. For example, a page at https://www.foo.com
may include a script from https://www.bar.com, which
reads the content of the local storage and sends it to
https://www.bar.com, thus potentially leaking sensitive

1https://tranco-list.eu/list/NXVW
2https://pptr.dev/

information from https://www.foo.com. The reason why
we define confinement at the origin level, rather than at
the site3 level, is that web storage content is origin-
scoped and thus subject to SOP.

b) Tracking: Tracking is one of the driving
forces of the web ecosystem and it is extremely common
in the wild. We call a tracking flow any information
flow that starts from a source, or ends into a sink,
located in a script served by a known web tracker. To
reconstruct this information, we leverage the fact that
the instrumentation performed by Jalangi keeps track
of the URL from which each script was downloaded.
By matching this script URL against popular filter lists
like EasyList and EasyPrivacy [9], we can detect the
involvement of known web trackers in the identified web
storage accesses.

c) Persistence: A last relevant aspect is the per-
sistence of the information involved in the flow. Though
both local storage and session storage can store arbitrary
information, the content of local storage may persist in-
definitely. Persistence may have important implications
on both security and privacy. For example, the local
storage may become a source of persistent XSS [19] and
may potentially enable perpetual tracking of web users.
For each flow, we thus track the type of the involved
web storage. Notice that the same flow may involve
both the local storage and the session storage, e.g.,
because local storage and session storage information
is combined together before network communication.

B. Measurement Results

Overall, our crawler successfully accessed and in-
strumented JavaScript code on 3,324 domains, detecting
5,187 information flows involving the Web Storage API
on 837 domains (25%). These include a significant
number of flows where the web storage acts as both
source and sink, which we filter out because they are
confined to the Web Storage API and thus have limited
security and privacy implications. After filtering, we are
left with 3,207 flows on 651 domains, including 531
confidentiality flows and 2,676 integrity flows.

3A site is defined as an effective top-level domain (eTLD) + 1. For
example, foo.example.com and baz.example.com belong to the same
site example.com.

4

TABLE II. SOURCES AND SINKS INVOLVED IN
CONFIDENTIALITY AND INTEGRITY FLOWS

Class #flows #domains

Confid. Cookies 202 66
Network 329 139

Integrity

Cookies 410 72
Current URL 1,582 353
Navigator 979 204
Network 913 238

Table II reports a first breakdown of the detected
flows in terms of the involved sources and sinks.4 As we
can see, a significant number of flows involves network
sources or sinks: this happened for 329 confidentiality
flows (62%) and 913 integrity flows (34%).

We now focus on a more fine-grained classification
of the detected flows, as we described in the previous
section. Overall, we found that 1,053 flows (33%) are
external, i.e., a significant amount of the flows related
to the Web Storage API also involve an origin different
from the origin of the page where the flow was detected.
Moreover, 2,276 flows (71%) are related to tracking,
i.e., the majority of the detected flows can be attributed
to known trackers included in popular filter lists. Finally,
2,487 flows (78%) only make use of local storage, 708
flows (22%) only make use of session storage and 12
flows make use of both. All this information suggests
that a common use case of web storage is persistent
web tracking, possibly performed by third parties.

To provide further insights on the use of web storage
in the wild, we also investigate potential correlations be-
tween the different axes considered in our classification.
The results of our analysis are shown in Table III. The
table supports the following selected observations:

• Confidentiality flows are roughly equally split
between internal and external flows, while in-
tegrity flows are mostly internal (70%). This
shows that it is much more common to send
web storage information to third parties, rather
than having third parties write information in
the web storage.

• The majority of the confidentiality flows can be
attributed to trackers (65%). Remarkably, how-
ever, even a higher percentage of integrity flows
can be attributed to trackers (72%). Indeed, the
table also shows that the majority of tracking
flows are integrity flows (85%). This suggests
that trackers routinely both read and write web
storage information in the wild.

• External flows are more likely to be confiden-
tiality flows than internal flows (25% vs. 12%)

4The sum of the integrity flows exceeds 2,676, because a flow may
involve multiple sources. In this case, the same flow is counted on
two different rows of the table, e.g., Cookies and Network.

and the very large majority of the external flows
can be attributed to trackers (78%). Moreover,
tracking flows are more likely to be external
than non-tracking flows (36% vs. 25%). This
suggests that trackers normally send web stor-
age information to third parties.

• Tracking flows operate on local storage more
frequently than non-tracking flows (81% vs.
69%). Moreover, flows involving the session
storage are more likely to be internal than flows
involving the local storage (83% vs. 63%). This
suggests that local storage is the prime target of
trackers and session storage is largely dedicated
to internal use within a single origin.

• Finally, we observe that confidentiality flows
are more likely to operate on local storage than
integrity flows (88% vs. 76%), just like external
flows involve local storage more frequently than
internal flows (88% vs. 73%). This shows that
the persistent information saved in the local
storage is often the target of information leaks,
likely towards third parties.

To further shed light on the security and privacy
implications of web storage in the wild, we also perform
an additional classification of the detected external
information flows, i.e., information flows involving two
different origins. In particular, we analyze how many
such flows are still within the same site and how
many are cross site. This is an interesting information,
because different domains under the same site normally
belong to the same owner, i.e., the entity who performed
the domain registration, hence same-site external flows
are likely less significant from a security and privacy
perspective. The results of our analysis are shown in
Table IV. They highlight that the very large majority of
the external flows are cross-site and this observation is
uniform across all classes of external flows. This further
confirms the relevance of our findings.

The last analysis we carry out estimates how many
information flows are introduced by libraries. These
flows are particularly interesting, because libraries are
normally used by multiple pages, hence the analysis of a
single library may shed light on the behavior of multiple
pages. To identify libraries, we look for duplicate flows
within different domains and we aggregate them based
on the script URL information provided by Jalangi.
Specifically, we use the script URL of the source for
the integrity flows and the script URL of the sink for
the confidentiality flows. Table V reports information on
the top 10 most popular libraries, based on the number
of domains where an information flow was detected. As
we can see, the large majority of these libraries (8 out
of 10) is related to web tracking and the most popular
library is used for tracking on 66 domains, i.e., roughly

5

TABLE III. CLASSIFICATION OF THE DETECTED INFORMATION FLOWS

Confid. Integrity Internal External Tracking Non-Tracking Local Session Both
Confid. - - 268 (50%) 263 (50%) 343 (65%) 188 (35%) 464 (88%) 55 (10%) 12 (2%)

Integrity - - 1,886 (70%) 790 (30%) 1,933 (72%) 743 (28%) 2,203 (76%) 653 (24%) 0 (0%)
Internal 268 (12%) 1,886 (88%) - - 1,452 (67%) 702 (33%) 1,564 (73%) 586 (27%) 4 (0%)
External 263 (25%) 790 (75%) - - 824 (78%) 229 (22%) 923 (88%) 122 (12%) 8 (0%)
Tracking 343 (15%) 1,933 (85%) 1,452 (64%) 824 (36%) - - 1,845 (81%) 422 (19%) 9 (0%)

Non-Tracking 188 (20%) 743 (80%) 702 (75%) 229 (25%) - - 642 (69%) 286 (31%) 3 (0%)
Local 464 (19%) 2,023 (81%) 1,564 (63%) 923 (37%) 1,845 (74%) 642 (26%) - - -

Session 55 (8%) 653 (92%) 586 (83%) 122 (17%) 422 (60%) 286 (40%) - - -
Both 12 (100%) 0 (0%) 4 (33%) 8 (67%) 9 (75%) 3 (25%) - - -

TABLE IV. ADDITIONAL BREAKDOWN OF THE EXTERNAL
INFORMATION FLOWS

Same Site Cross Site
Confid. 22 (8%) 241 (92%)

Integrity 30 (4%) 760 (96%)
Tracking 15 (2%) 809 (98%)

Non-Tracking 37 (16%) 192 (84%)
Local 33 (4%) 890 (96%)

Session 19 (16%) 103 (84%)
Both 0 (0%) 8 (100%)

10% of the domains where we identified an information
flow involving the Web Storage API.

V. RELATED WORK

Many papers presented dynamic analysis techniques
for JavaScript, we refer to [2] for a recent survey on
the topic. Despite the popularity of JavaScript analyses,
however, we are not aware of prior empirical studies
on the use of web storage in the wild. A notable
exception is a study carried out by Belloro and My-
lonas in 2018 [4]. In their work, the authors analyzed
how less known client-side storage mechanisms like
web storage, IndexedDB and Web SQL Database (now
deprecated) were used for web tracking on popular
sites and questioned the lack of user control over
the locally stored data. In our work, instead, we take
a holistic view of web storage and we carry out a
systematic analysis of its use in the wild, based on
an automated categorization of the detected information
flows along different axes. Indeed, our study is based on
a dynamic information flow analysis, which minimizes
false positives and provides meaningful semantics to
different usages of the Web Storage API. Their work,
in turn, uses a lightweight static analysis which only
detects API calls, hence cannot discriminate between
actual information leaks and simple “feature detection”
libraries like Modernizr.5

Chen and Kapravelos presented a taint tracking
engine called Mystique and used it to track information
leakage from browser extensions [7]. Mystique was ap-
plied to a total of 181,683 browser extensions, detecting
3,686 extensions leaking private information. In later
work, Mystique was also used to investigate the leakage

5https://modernizr.com/

of first-party cookies to third-party cookies for web
tracking [6]. In particular, the authors estimated that
around 57% of the sites in the Alexa top 10k include
at least one cookie containing a unique user identifier
which is exchanged with multiple third parties.

Sjosten et al. proposed EssentialFP, a principled ap-
proach to the dynamic detection of browser fingerprint-
ing [17]. EssentialFP is based on dynamic analysis and
in particular on an extension of JSFlow [10]. To capture
the essence of fingerprinting, EssentialFP relies on an
extensive list of browser-specific sources and looks
for information flows ending in known network sinks.
The efficacy of EssentialFP was illustrated through an
empirical study based on two classes of web pages:
fingerprinting pages (authentication, bot detection and
more) and non-fingerprinting pages (analytics, polyfills,
advertisement).

Karim et al. implemented a platform-independent
dynamic taint analysis tool for JavaScript, called Ich-
naea [12]. They encoded the taint propagation logic as
instructions for an abstract machine, so as to leverage
an existing JavaScript instrumentation framework called
Jalangi [16]. To evaluate Ichnaea, the authors applied it
to a Tizen web application to detect privacy leaks and
identified flows of tainted input data to sensitive sinks
in Node.js modules, thus detecting both known and un-
known vulnerabilities. Our implementation follows the
approach proposed in Ichnaea with few modifications,
yet it is targeted to a different application scenario.

Staicu et al. performed an empirical investigation of
information flows in existing JavaScript code [18]. Their
study accounted for both explicit and implicit informa-
tion flows, concluding that explicit flows are by far the
most prevalent in the wild and the additional runtime
overhead required to track implicit flows may be unjus-
tified. Their analysis is also based on Jalangi [16], which
the authors used to implement a dynamic information
flow tracker inspired to JSFlow [10].

VI. CONCLUSION

In this paper, we performed a first empirical analysis
of the use of web storage in the wild, based on dynamic
taint tracking and an automated classification of the
detected information flows. Our analysis showed that

6

TABLE V. MOST POPULAR LIBRARIES INTRODUCING INFORMATION FLOWS

Library #flows #domains Tracking?
https://static.chartbeat.com/js/chartbeat.js 132 66 ✓
https://mc.yandex.ru/metrika/tag.js 228 34 ✓
https://fast.wistia.com/assets/external/E-v1.js 106 26 ✗
https://pagead2.googlesyndication.com/pagead/managed/js/adsense/m202112060101/show ads impl with ama.js 124 25 ✓
https://quantcast.mgr.consensu.org/tcfv2/cmp2.js 24 24 ✗
https://static.chartbeat.com/js/chartbeat video.js 42 20 ✓
https://az416426.vo.msecnd.net/scripts/a/ai.0.js 22 19 ✓
https://cdn.izooto.com/scripts/sdk/izooto.js 42 16 ✓
https://bat.bing.com/bat.js 34 15 ✓
https://cdn.pdst.fm/ping.min.js 17 15 ✓

web storage is routinely accessed by third parties, in-
cluding known web trackers, who are particularly eager
to have both read and write access to persistent web
storage information. This motivates the need for further
research on the security and privacy implications of web
storage content, that we plan to pursue as a follow-
up work of this preliminary investigation. Constructive
solutions designed to prevent web storage abuses would
be particularly worth investigating, e.g., the recently
proposed “page-length storage” approach designed to
mitigate the effects of stateful web tracking [11].

Moreover, we plan to reuse known heuristics from
the literature [6], [9] to detect personally identifiable
information and better investigate the real-world privacy
implications of the detected tracking flows. We also
want to take a more in-depth look into the most popular
libraries introducing information flows involving the
Web Storage API, given the impact that libraries may
have. It would be particularly interesting to analyze
the documentation of known trackers to collect insights
about their use of web storage and investigate their
compliance with regulations like GDPR [8]. Finally,
we would like to further refine our classification of
information flows to account for common use cases
that we anticipate, e.g., web authentication and browser
fingerprinting. Digging into selected use cases may be
helpful to provide additional insights of the uses and
abuses of web storage in the wild.

REFERENCES

[1] “Web storage,” https://html.spec.whatwg.org/multipage/
webstorage.html.

[2] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic,
K. Sen, and C. Staicu, “A survey of dynamic analysis
and test generation for javascript,” ACM Comput. Surv.,
vol. 50, no. 5, pp. 66:1–66:36, 2017. [Online]. Available:
https://doi.org/10.1145/3106739

[3] A. Barth, “HTTP state management mechanism,” https://
datatracker.ietf.org/doc/html/rfc6265.

[4] S. Belloro and A. Mylonas, “I know what you did last
summer: New persistent tracking mechanisms in the wild,”
IEEE Access, vol. 6, pp. 52 779–52 792, 2018. [Online].
Available: https://doi.org/10.1109/ACCESS.2018.2869251

[5] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta,
“Surviving the web: A journey into web session security,”

ACM Comput. Surv., vol. 50, no. 1, pp. 13:1–13:34, 2017.
[Online]. Available: https://doi.org/10.1145/3038923

[6] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos,
“Cookie swap party: Abusing first-party cookies for web
tracking,” in WWW ’21: The Web Conference 2021, Virtual
Event / Ljubljana, Slovenia, April 19-23, 2021, J. Leskovec,
M. Grobelnik, M. Najork, J. Tang, and L. Zia, Eds.
ACM / IW3C2, 2021, pp. 2117–2129. [Online]. Available:
https://doi.org/10.1145/3442381.3449837

[7] Q. Chen and A. Kapravelos, “Mystique: Uncovering
information leakage from browser extensions,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, D. Lie, M. Mannan, M. Backes,
and X. Wang, Eds. ACM, 2018, pp. 1687–1700. [Online].
Available: https://doi.org/10.1145/3243734.3243823

[8] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub,
and T. Holz, “We value your privacy ... now take some
cookies: Measuring the gdpr’s impact on web privacy,” in 26th
Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019. [Online]. Available:
https://www.ndss-symposium.org/ndss-paper/we-value-your-
privacy-now-take-some-cookies-measuring-the-gdprs-impact-
on-web-privacy/

[9] S. Englehardt and A. Narayanan, “Online tracking: A
1-million-site measurement and analysis,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28,
2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds. ACM, 2016, pp. 1388–1401.
[Online]. Available: https://doi.org/10.1145/2976749.2978313

[10] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld,
“Jsflow: tracking information flow in javascript and its
apis,” in Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014,
Y. Cho, S. Y. Shin, S. Kim, C. Hung, and J. Hong,
Eds. ACM, 2014, pp. 1663–1671. [Online]. Available:
https://doi.org/10.1145/2554850.2554909

[11] J. Jueckstock, P. Snyder, S. Sarker, A. Kapravelos, and
B. Livshits, “There’s no trick, its just a simple trick: A
web-compat and privacy improving approach to third-party
web storage,” CoRR, vol. abs/2011.01267, 2020. [Online].
Available: https://arxiv.org/abs/2011.01267

[12] R. Karim, F. Tip, A. Sochurková, and K. Sen, “Platform-
independent dynamic taint analysis for javascript,” IEEE Trans.
Software Eng., vol. 46, no. 12, pp. 1364–1379, 2020. [Online].
Available: https://doi.org/10.1109/TSE.2018.2878020

[13] V. L. Pochat, T. van Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen, “Tranco: A research-oriented
top sites ranking hardened against manipulation,” in 26th
Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27,

7

2019. The Internet Society, 2019. [Online]. Available: https:
//www.ndss-symposium.org/ndss-paper/tranco-a-research-
oriented-top-sites-ranking-hardened-against-manipulation/

[14] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1,
pp. 5–19, 2003. [Online]. Available: https://doi.org/10.1109/
JSAC.2002.806121

[15] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld,
“Explicit secrecy: A policy for taint tracking,” in IEEE
European Symposium on Security and Privacy, EuroS&P
2016, Saarbrücken, Germany, March 21-24, 2016. IEEE,
2016, pp. 15–30. [Online]. Available: https://doi.org/10.1109/
EuroSP.2016.14

[16] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs, “Jalangi:
a selective record-replay and dynamic analysis framework
for javascript,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, B. Meyer,
L. Baresi, and M. Mezini, Eds. ACM, 2013, pp. 488–498.
[Online]. Available: https://doi.org/10.1145/2491411.2491447

[17] A. Sjösten, D. Hedin, and A. Sabelfeld, “Essentialfp:
Exposing the essence of browser fingerprinting,” in IEEE
European Symposium on Security and Privacy Workshops,
EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE,
2021, pp. 32–48. [Online]. Available: https://doi.org/10.1109/
EuroSPW54576.2021.00011

[18] C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld,
“An empirical study of information flows in real-world
javascript,” CoRR, vol. abs/1906.11507, 2019. [Online].
Available: http://arxiv.org/abs/1906.11507

[19] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t
trust the locals: Investigating the prevalence of persistent
client-side cross-site scripting in the wild,” in 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019. [Online]. Available:
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-
locals-investigating-the-prevalence-of-persistent-client-side-
cross-site-scripting-in-the-wild/

8

