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Our work
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The Ethereum blockchain
• Data “recorded” in the ledger are immutable
• Decentrilized “smart contract” can be executed by 

untrusted nodes in a deterministic way



ERC-721
ERC-721 tokens
• Token Id
• Owner Id
• Metadata



ERC-721

ERC-721 token management 
contract
• ownerOf()
• transferFrom()
• tokenURI()
• approve()
• getApproved()

ERC-721 tokens
• Token Id
• Owner Id
• Metadata



JWT
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JWT + ERC-721
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Accessing legacy resource servers

• It facilitates logging and auditing services
• Clients can at any time retrieve their access token 

from the blockchain 
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Accessing resource servers with 
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Revocation
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• Revocation is asynchronous
• Authorization server does not have to be online



Delegation

Resource server

Resource

Resource request, token

Client A

Verify Client key ownership

getApproved(), tokenURI()

Client B

Approve(Client B)

• Delegation is not transitive
• Revocation is not affected



Fair exchange
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Discussion

• Existing OAuth 2.0 code-base can be re-used
• In some cases our approach is transparent to OAuth 

endpoints
• In no payments are involved then private, or testing 

chains can be used. 
• If the client does not interact with the blockchain, 

then ownerOf() may return any type of identifier.
• (Public) blockchains have privacy issues, introduce 

delays (~13sec per transaction) and monetary costs 
(~$0.10 to create a token, $0.02 to revoke or 
delegate)
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