
OAuth 2.0 authorization
using blockchain-based

tokens
Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros

Voulgaris, George C. Polyzos

Resource sharing

Client

Resource server

Resource owner

Authorization
Resource storage

Resource access

OAuth 2.0-based authorization

Client Resource ownerAuthorization request
Authorization grant

OAuth 2.0-based authorization

Authorization server

Client

Authorization grant

Access token

Resource ownerAuthorization request
Authorization grant

OAuth 2.0-based authorization

Authorization server

Client

Resource server

Authorization grant

Access token

Resource

Resource ownerAuthorization request
Authorization grant

Resource request, token

Our work

Authorization server

Client

Resource server

Authorization grant

Access token

Resource

Resource ownerAuthorization request
Authorization grant

Resource request, token

The Ethereum blockchain
• Data “recorded” in the ledger are immutable
• Decentrilized “smart contract” can be executed by

untrusted nodes in a deterministic way

ERC-721
ERC-721 tokens
• Token Id
• Owner Id
• Metadata

ERC-721

ERC-721 token management
contract
• ownerOf()
• transferFrom()
• tokenURI()
• approve()
• getApproved()

ERC-721 tokens
• Token Id
• Owner Id
• Metadata

JWT

Access token

Authorization server

Client {
“iss”: Authorization Server
“aud”: Resource URI
“sub”: Client Key
“exp”: Expiration Time
“jti” : Token identifier

}

JWT + ERC-721

Access token

Authorization server

Client {
“iss”: Authorization Server
“aud”: Resource URI
“sub”: Client Key
“exp”: Expiration Time
“jti” : Token identifier

}

ERC-721 token

Token Id : jti
Owner Id : Client key
Metadata: JWT

Accessing legacy resource servers

• It facilitates logging and auditing services
• Clients can at any time retrieve their access token

from the blockchain

Resource server

Resource

Resource request, token

Client

Verify Client key ownership

Accessing resource servers with
BC read access

Resource server

Resource

Resource request, token

Client

Verify Client key ownership

ownerOf(), tokenURI()

Revocation

Resource server

Resource request, token

Client

ownerOf(), tokenURI()

Authorization server

transferFrom()

• Revocation is asynchronous
• Authorization server does not have to be online

Delegation

Resource server

Resource

Resource request, token

Client A

Verify Client key ownership

getApproved(), tokenURI()

Client B

Approve(Client B)

• Delegation is not transitive
• Revocation is not affected

Fair exchange

Access token

Authorization server
Client

ERC-721 token

Token identifier
Owner : Authorization server
Metadata: JWT

Payment

transferFrom()

Discussion

• Existing OAuth 2.0 code-base can be re-used
• In some cases our approach is transparent to OAuth

endpoints
• In no payments are involved then private, or testing

chains can be used.
• If the client does not interact with the blockchain,

then ownerOf() may return any type of identifier.
• (Public) blockchains have privacy issues, introduce

delays (~13sec per transaction) and monetary costs
(~$0.10 to create a token, $0.02 to revoke or
delegate)

Thank you
fotiou@aueb.gr

https://mm.aueb.gr/blockchains

