
N. Sapountzis, R. Sun, D. Oliveira,

University of Florida,

February 2019

1

DDIFT: Decentralized Dynamic Information Flow
Tracking for IoT Privacy and Security

Warming Up

2

Happiness is a fast internet

connection ☺

1. Intro: IoT era and DIFT

2. DDIFT 1st step: Mobile phone running DIFT [fast timescale]

3. DDIFT 2nd step: Cloud running forensics [slow timescale]

4. DDIFT: Overview

5. Simulation of DDIFT

6. Conclusions

Overview

2019: The dominance of IoT in human life is a reality

– Wearables

– Smart homes

– Healthcare

– Greening ecosystem

1. Intro

… usually applications, or applets, running at the mobile
phone, is the interface to manage these devices

– Wearables --> applet to upload to Doogle Dr. all new pics

– Smart homes --> open thermostat when I approach
home

– Healthcare --> notify my doctor if my heart rate has
improper impulses

– Greening ecosystem --> provide PV array analytics

1. Intro

these apps (= applications + applets) , and most popular
platforms to develop them, open up for various privacy ,
security, availability and integrity concerns

1. Intro

However,

1. Intro: traditional DIFT

DIFT: works with 2 processes

• PROCESS A: Tag insertion: insert tags to variables (or memory bytes)

• PROCESS B: Tag propagation: propagate tags during system
execution

– Direct Flow Propagations (DFP)

– Indirect Flow Propagations (IFP)
base

height

area
1. int base = 5; //the base of the triangle

2. int height = 4; //the base of the triangle

3. int area = base * height; //the area

1. int base = 5; //the base of the triangle

2. int height = 4; //the base of the triangle

3. int shape = “triangle”; //type of shape

4. (If shape == “triangle”)

5. area = base * height //the area

base

height

shape

area

2. DDIFT Algorithm at device

What about DIFT in IoT?

Challenges while applying DIFT in IoT [Tag Insertion]: :
1. Different system activities add heterogeneous knowledge in the information

flow and should add different level of security concerns

– We consider tag differentiation (many colors), e.g., network, file, RV tags

– Each variable has a list that accommodates up to N #of tags

2. Ability to reverse engineer back to the inputs

– We keep provenance information (e.g., network tag coming from IP 13.2.3.5)

2. Device: running DIFT at the app level

2. Device: running DIFT at the app level

Challenges while applying DIFT in IoT [Tag Propagation]: (cont’)
3. Limited (memory, battery resources).

• Algorithm 1 (next slide): How to optimally allocate the limited
resources to the vast #tags that attempt to propagate?

4. Minimize false alarms that DIFT usually bring.
• Algorithm 1 (next slide): Should all indirect flows be

propagated?

2. DDIFT Algorithm at device

• Cloud performs heavy forensics analysis in a slow timescale, relying
on a continuous analysis of a large volume of tags

• Cloud’s main objective is to:

– dictate the best values for the weighting parameters λ, μ, so e.g. the
devices boost the important tags

– develop privacy and security policies,

• e.g. URL tag + String tag + netflow tag = URL Attack

• learn a priory what strings, network connections etc. are suspicious

3. Cloud: running forensics

4. DDIFT: Decentralized Dynamic Information
Flow Tracking

1
s
t
s
te

p
(D

IF
T

)
2

n
d

s
te

p
 (

fo
re

n
s
ic

s
)

1. name = GoogleContacts.newContactAdded.Name //retrieve the name of the new contact

2. num = GoogleContacts.newContactAdded.PhoneNumber //retrieve the number

3. digits = Math.random()*10 + ’’ // returns [0,10] - # of digits that the attack will change

4. for (int i=0; i<= digits; i++) // parse all “digit” first digits

5. digits = do things//(e.g., connect to diff. files/ports) –to congest provenance lists

6. value = Math.floor(Math.random()*10) + ’’ // flip a coin to find the new digit

7. num = num.replace(num.charAt(i),value) // MALICIOUS ACTION → change digit

8. exit = GoogleSheets.appendToGoogleSpreadsheet(name + num) //upload to Google drive spreadsheet

name

num

digits

STRING
#13

RV
FILE
#76

FILE
#77

FILE
#78

STRING
#12

value

FILE
#79

RV
FILE
#76

FILE
#77

FILE
#78

RV RV
FILE
#76

FILE
#77

RV

exit

FILE
#79
FILE
#78

RV
FILE
#76

FILE
#77

RV
STRING

#13
ADDRESS
DEPEND.

5. Simulations (N=5): traditional DIFT
(propagate all IFs)

NETWORK
#89

No one of the IF is
propagated

=>
Under-tainting

5. Simulations (N=5): traditional DIFT
(propagate all IFs)

All IFs propagated
=>
Over-tainting (+ memory
pollution)

Other over-tainting cases (when
more space is available)
=>
Aggressively propagate tags

name

num

digits

STRING
#13

RV
FILE
#76

FILE
#77

FILE
#78

STRING
#12

value

FILE
#79

RV
FILE
#76

FILE
#77

FILE
#78

RV

exit

FILE
#79

ADDRESS
DEPEND.

RV

STRING
#13

RV ADDRESS
DEPEND.

NETWORK
#89

Simulated different provenance-list sizes scenarios:

Detection efficiency improvement 43%

Memory usage improvement 71%

5. Simulations (N=5): DDIFT (α-fair utility) ☺

FILE
#76

FILE
#76

FILE
#76

• DDIFT: dynamically tracks the information flow at the mobile device
level, and adapts to the IoT challenges:

– Large #devices: Scalable scheme through the synergy of cloud (slow
timescale) and device (fast timescale)

– IoT limited resources: optimally prioritizing tags

– [open problem] Indirect Flow Propagation: tackled with optimization
theory

– Extendable to software and hardware

– Able to design malware signatures through the tag confluwnces and
further detect them

6. Conclusions

Thank you!

Network Layer Optimization for Next Generation HetNets 18

