
Designing a Secure IoT System Architecture from a
Virtual Premise for a Collaborative AI Lab

Vida Ahmadi Mehri
Blekinge Institute of Technology

vida.ahmadi.mehri@bth.se

Dragos Ilie
Blekinge Institute of Technology

dragos.ilie@bth.se

Kurt Tutschku
Blekinge Institute of Technology

kurt.tutschku@bth.se

Abstract—IoT systems are increasingly composed out of flex-
ible, programmable, virtualised, and arbitrarily chained IoT
elements and services using portable code. Moreover, they might
be sliced, i.e. allowing multiple logical IoT systems (network +
application) to run on top of a shared physical network and
compute infrastructure. However, implementing and designing
particularly security mechanisms for such IoT systems is chal-
lenging since a) promising technologies are still maturing, and
b) the relationships among the many requirements, technologies
and components are difficult to model a-priori.

The aim of the paper is to define design cues for the security
architecture and mechanisms of future, virtualised, arbitrarily
chained, and eventually sliced IoT systems. Hereby, our focus is
laid on the authorisation and authentication of user and host,
as well as on code integrity in these virtualised systems. The
design cues are derived from the design and implementation of a
secure virtual environment for distributed and collaborative AI
system engineering using so called AI pipelines. The pipelines
apply chained virtual elements and services and facilitate the
slicing of the system. The virtual environment is denoted for
short as the virtual premise (VP). The use-case of the VP for
AI design provides insight into the complex interactions in the
architecture, leading us to believe that the VP concept can be
generalised to the IoT systems mentioned above. In addition, the
use-case permits to derive, implement, and test solutions. This
paper describes the flexible architecture of the VP and the design
and implementation of access and execution control in virtual and
containerised environments.

I. INTRODUCTION

The Internet of Things (IoT) is evolving. Originally, it
aimed at wirelessly interconnecting cyber-physical devices
(sensors, actuators, wearables, vehicles, home appliances) with
control applications [1]. However, complex enhancements of
the IoT have been recently developed. IoT is increasingly
viewed as a service- and Cloud-based system [2]. Such systems
leverage, for example, the intermittent nature of wireless
connectivity or provide for stateless information access us-
ing RESTful services. The concepts of Fog computing [3]
and Multi-access Edge Computing (MEC) in public cellular
networks[4] also complement the original IoT idea. Here, edge
devices are located close to sensors and perform substan-
tial amounts of computation, storage, communication (e. g. ,
high bandwidth or multi-homing for reliability). Furthermore,
slicing concepts for IoT systems have been proposed [5].

They typically focus only on slicing techniques for the
network segment and use SDN (Software Defined Networking)
concepts to control the data forwarding.

Our hypothesis is that IoT systems accelerate even stronger
towards flexible, virtualised, programmable, sliceable, and
arbitrarily chained IoT elements and services using portable
code. We substantiate this hypothesis by highlighting three
technology trends: a) small but powerful single-board com-
puters became popular, such as Rasberry PI [6] with 14
million units sold by 2017 [7]; b) various hypervisors and
container environments became available for this class of de-
vices [8], and c) component-based application development [9]
and orchestration of containers [10] have gained traction in
application and service provisioning.

While it becomes clear that future IoT systems pick up
concepts and mechanisms from virtualisation, slicing and
code portability, limited research has been conducted on the
impact of those technologies on IoT security architectures
and mechanisms. A recent analysis [11] shows that network
security, data encryption, API security and authentication and
PKI infrastructures are among the most required technologies.

Our approach is to focus on authentication and authorisa-
tion mechanisms in IoT systems that allow for virtualisation,
slicing and code portability. However, many virtualisation and
slicing technologies are still evolving. For example, Docker
container security is increasingly addressed [12], [13], however
not yet solved. This status impacts the engineering of ICT
systems in general and of IoT systems in particular.

To overcome this dilemma, we applied a prototype-based
approach for identifying the design cues to for security ar-
chitectures and mechanisms in virtualised IoT systems. We
start our investigation by analysing and comparing today’s IoT
architectures and draw parallels from the use-case of AI system
engineering using a virtualised AI lab, denoted as secure VP.
The lab permits the usage of a marketplace for AI artefacts
and pipelines for component-based development. The use case
is of particular challenge since it includes code mobility,
multi-party collaboration including security, DRM, and privacy
requirements for the aforementioned parts and edge devices.
The VP aims at simplifying and orchestrating the security and
security policy management. That means, the VP reliefs the
system designer from addressing the security mechanisms and
management, including security policy enforcement (e. g. , for
DRM and data privacy). The system designer can focus on the
AI application.

The paper is organised as follows: Sec. II describes our
design concept, analyses and compares the various IoT archi-
tectures. Sec. III describes a component-based AI development

Workshop on Decentralized IoT Systems and Security (DISS) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-56-8
https://dx.doi.org/10.14722/diss.2019.23006
www.ndss-symposium.org

concept, its requirements and the suggested architecture for the
VP. Sec. IV focuses on the authentication and authorisation
of users, hosts, and code in virtual labs using code mobility.
Sec. V discusses the lesson leaned and generalisation of the
mechanism, incl. their vulnerabilities. Sec. VI summarises our
finding and provides a brief outlook.

II. TOWARDS FUTURE SECURE, DISTRIBUTED AND
FLEXIBLE IOT SYSTEM ARCHITECTURE

A. Design Concept

Engineering security is a multidisciplinary endeavour [14].
Designing ICT architectures, and IoT systems, in particular,
is typically a rigorous and disciplined system engineering
task [15]. However, it is also acknowledged in [15] that there
is an increasing disagreement between theory and practice in
system design. This gap is mainly accounted to the huge push
for fast system integration, e. g. , by market needs. We addi-
tionally attribute it to the lack of means for modelling and val-
idating techniques for large-scale systems using pre-maturing
technologies. To overcome this dilemma, [15] establishes the
vision of autonomous IoT systems that can cope with the
complexity through tighter integration of computing elements
and compensating the reduced human intervention by enabling
self-adaptation. While we believe that self-management mech-
anisms are of future importance, fully autonomous security
control is hard to establish currently. Therefore, we focus on
adaptivity in security, c. f. , Sec. II-B for a definition, as a first
approach.

Requirements versus Architecture: Our scientific approach
is not to design a fully flexible IoT architecture from scratch.
We derive our design cues for security architecture from the
interaction of security requirements and system architecture.
In order to have a valid body of requirements and possible so-
lutions, we consider the challenging use-case of collaborative
AI system design.

From a distance, requirements specify what a system must
be capable and the architecture describes how a system will be
organised and behave such that it will fulfil these requirements.
Hence, requirement engineering precede typically architec-
ture design. However, when using immature technologies,
architectural design choices easily influence these techniques.
Therefore, we start our approach to security design by con-
sidering the IoT architectures first, c. f. , Sec. II-B and then
define requirements for security mechanisms, in particular,
authentication, described in Sec. III.

B. Comparison of IoT Architectures

Fig. 1 outlines the three major IoT architectures introduced
in Sec. I. In general, IoT architectures consist of three different
layers, namely: a) the Things Layer: sensors and actuators,
b) the Network Layer: forwarding data or service routing
(including access points and gateways), and c) the Application
Layer: implementing data processing and control.

Table I shows a feature-based comparison of the architec-
tures displayed in Fig. 1. The following features were used in
the comparison: compute and storage location, service chain-
ing, slicing, enabling collaboration, flexibility and adaptivity
towards application workflows, scalability, and finally, security
and trust.

Original
IoT

Service- and Cloud-
based IoT

Edge-enabled
IoT

Ap
pl

ic
at

io
n

La
ye

r
N

et
w

or
k

La
ye

r
Th

in
gs

La

ye
r

Internet as transport
platform

Internet as service
platform

Controller Cloud-based
Controller

Intelligent
edge devices

Elasticity bet-
ween Cloud
and edge

IoT as an elastic
and programmable

platform

Fig. 1: Types of IoT architectures

The original IoT concept demonstrated impressively the
capabilities of the applications and the scalability of the
Internet as a transport platform. Service- and Cloud-based
IoT enabled a larger range of applications by augmenting
the original IoT with the elasticity and flexibility of Cloud
and service computing. Edge-enabled IoT permits fine-grained
resource elasticity between Cloud and edge and also the slicing
of the network segment. All in all, over the years the IoT
concept became more flexible in terms of resource usage.
However, Table I also reveals that these IoT concepts still lack
in terms of flexibility of security. Flexible security, of course,
aims at high security but also at specialising and adapting the
security to the application needs, e. g. , specific data privacy
is enforced at participating Cloud and edge nodes. In addition
to security, trust is needed for collaboration. Hence, mutual
trust must be adaptively established between those entities who
would like to cooperate on data or application.

III. PIPELINE- AND COMPONENT-BASED DEVELOPMENT
OF AI SYSTEMS

The concept of a pipeline- and component-based system
development was recently successfully applied for engineering
data-driven AI systems [17]. Its main objective is to reduce
design costs and time by re-using knowledge manifested in so-
called AI artefacts. These artefacts are objects, code and func-
tions used in AI development. Multiple artifacts can be chained
to form an AI engineering pipeline. Artefacts and pipelines
enable AI specialists to focus on AI functions and to exchange
the results with another specialists. This approach may improve
the quality of the AI solution by use of specialisation. Google
has recently published a concept for a Cloud-based pipeline
[18] and the H2020 project Bonseyes suggests a distributed
one [19].

A. AI Pipeline

An excerpt of a Bonseyes AI training pipeline for Keyword
Spotting (KWS) is depicted in Fig. 2, c. f. , [20]. The KWS
applies a Deep Neural Network (DNN) model for identifying
keywords in spoken sentences. This pipeline includes four
steps: Data Sourcing, Data Preparation, Training, and Target
Benchmarking. The steps are needed to obtain and pre-process
data and to train and benchmark the DNN model. Each step
is embedded in an artefact and instantiated as a Docker
container. The output of an artefact is handed over as input to
the succeeding one. Hence, the pipeline forms an AI service
function chain. In Bonseyes, the pipeline is distributed, i. e. ,
Docker containers are executed on arbitrary hosts (including

2

TABLE I: Comparison of the different types of IoT architectures

Feature Original IoT Service- and Cloud-based IoT Edge-enabled IoT Virtual Premise (VP)
Compute
location

at controller in Cloud elastically at Cloud / edge elastically and programable
at Cloud and edge

Data location at controller in Cloud and service proxies elastically at Cloud / edge elastically at Cloud / edge
Service chaining not intented in Cloud in Cloud and edge per pipeline in Cloud and

edge
Slicing not intented in network (when using SDN) in Cloud and network

(when using SDN)
application overlay per
pipeline

Collaboration single application in Cloud in Cloud (not across edge) per pipeline
Flex. / adaptive
to app. workflow

static by design in Cloud elastic and programable through programmability
and orchestration

Scalability by transport and
processing capacity

by Cloud and service elasticity by Cloud and edge elastic-
ity

per pipeline through Cloud /
edge elasticity

Security and
trust

static by secured
transmission, nodes
and PKI

static by secured transmission,
nodes, service API and PKI

predefined by architecture
[16]

flexible per pipeline
through programmability,
policies and orchestration

datacenter or local developer workstations). The outcome of
the training is an AI model that can be converted into code,
which can even be deployed on IoT devices with adequate
computational capabilities.

B. AI Marketplace

A core element of the Bonseyes project is the AI Market-
place (MP), c. f. , Fig. 3., which enables the exchange of AI
artefacts and the component-based AI design using artefacts.
Developers can develop artefacts and upload them into the
MP as containers. The containers are stored by the MP in
the Bonseyes’ Private Docker repository (BPDR). In turn, AI
specialists can search the MP for specific artefacts, download
them from the BPDR, and place them into pipelines. In this
way, the marketplace enables collaborative development, i. e. ,
multiparty cooperation in AI design.

C. Component-based Development Challenges

Bonseyes use of MP for AI artefact exchange imposes these
specific high-level challenges on security related functions:

1) Protection of DRM (digital rights management): code
and data are of value and thus it is reasonable that their
owners want to protect and manage their digital rights.

2) Protection of privacy and data ownership: individuals
may be willing to share private data for the purpose of

Data Sourcing
(raw, labeled,

archive)

DNN Model Training

Training

Data Preparation
(merging,

processing,
partitioning)

Task Benchmarking

Visualization

Datasets
(Benchmark/train/test)

Raw
Data

Model

Task
Standard
Format
Script

Exploratory Data Analysis

Performance
Report

Accuracy
Report

Bonseyes
AI artefacts
in containers

Target
Benchmarking

Fig. 2: An AI data collection and training pipeline [20]

provide artefacts

AI pipeline 1 AI pipeline 2 AI pipeline N

reuse artefacts

Bonseyes Marketplace

BPDR

TXF pipeline

Fig. 3: Bonseyes AI marketplace, using a pipeline [18]

AI training but may not be willing to waive data privacy
and data ownership.

3) Compliance in collaboration: digital rights, privacy and
data ownership need to be obeyed across various physical
locations and legal entities when collaborating.

4) Fair enumeration: individuals, developers or companies
need to be reimbursed when their digital intellectual
property or data is used.

These high-level security challenges need to be translated into
technical security solutions: An AI marketplace architecture
is required, which enables authorised access, integrity and
compliance verification for artefacts in a distributed environ-
ment, i. e. , across various physical locations. Moreover, the
use of virtualisation technology for artefacts requires a) the
compliance verification of the virtual environment at a host, as
well as b) the validation of the artefact integrity, i. e. , that the
Docker image carrying the artefact was not changed. Hence,
authentication, authorisation, and policy enforcement are the
core elements of our solution.

3

Pipeline

Secure Virtual
Premise

AI
Artefact

Se
cu

rit
y

M
an

ag
er

Federated Authorized
Resource Layer

Eliminated
Administrative Borders

A
ut

ho
riz

at
io

n
R

eq
ue

st
s

Trusted
Docker Host

Selection and design of
AI artefacts

Selected
and
reused
artefacts

Newly
developed

artefacts

Marketplace Workbench

Engineering of Pipeline

Fig. 4: Architecture of the Virtual Premise

D. The Virtual Premise (VP)

Our solution for solving the technical challenges is to
enhance the MP by a secure VP, c. f. , Fig. 4. The core
functions of the VP are authentication, authorisation and policy
enforcement. VP places the AI pipeline in the centre and
builds a virtual boarder around it. The pipeline is instantiate on
federated authorised resources. The pipeline elements/artefacts
can be downloaded from the MP (or created and registered in
MP using a developer’s workbench). The VP uses network
slicing and virtualisation techniques to provide isolation of
pipelines, prevents unauthorised pipeline communication with
the outside and unifies the security and access policies per
pipeline. It allows workflows between authorised artefacts
through secure programmable and polymorphic interfaces. The
VP has similarities to an application overlay and builds a
virtual AI laboratory per pipeline. The inside of the VP is
a trusted area where artefacts comply with each other on
DRM, privacy and collaboration policies, while the outside
is untrusted. The artefacts, hosts and users of a pipeline must
be authenticated by the Security Manager (SM) in order to
join the VP. The policies of the VP are enforced locally on
the Docker hosts participating in the VP. The split between
security policy decision entities and enforcement points is
discussed in c. f. , Sec. IV.

In terms of IoT architectures, the VP can be considered
as an enhancement of the Edge-enabled IoT concept which
focuses on slicing with respect to adaptive and flexible se-
curity policies, c. f. , Fig. 5. The IoT features of the VP are
summarised and compared with other IoT architecture in the
last column of Tab. I. As can be observed, the VP enables
flexible security and trust per AI pipeline or IoT service chain.

E. Bonseyes AI Artefact Architecture

The second major component of the VP concept is the
architecture of AI artefact, which is shown in Fig. 6. The arte-
fact is implemented as a Docker container which is enhanced
by a specific Bonseyes Layer (BL). The BL serves four main
purposes: a) to control communication with the artefact; b)
to enable secure APIs to access AI functions and content;
c) to facilitate artefact authentication with entities from the

Bonseyes Virtual Premise
adapted to IoT

Ap
pl

ic
at

io
n

La
ye

r
N

et
w

or
k

La
ye

r
Th

in
gs

La

ye
r

Intelligent
edge devices

Elasticity bet-
ween Cloud
and edge

IoT as an elastic
and programmable

platform

Virtual
Premise with
IoT service
chain

Fig. 5: Virtual Premise as an
IoT Architecture

Fig. 6: A Bonseyes’ Docker
container comprising an AI
artefact.

Bonseyes eco-system; and d) to verify the functional integrity
of the underlying host platform, for maintaining the confi-
dentiality and integrity of data processing and data exchange
(e. g. , enforcing access control and DRM services). The BL
is stsrted as soon as the container is executed, thus ensuring
that all communication into the container is intercepted and
secured. The secure APIs for the workflow between artefacts
are referred to as the east-bound interface and the west-
bound interface, respectively. The API for the execution of
the AI function and towards the workbench is denoted as
the north-bound interface, while the one towards the host
(including virtualisation environment and filesystem access)
is denoted south-bound interface. The AI function together
with associated executable code is stored in component called
AI payload and the required libraries for this function can be
implemented as a layer in the Docker image.

IV. AUTHENTICATION AND ACCESS MANAGEMENT

The MP offers an interface through which artefacts can be
uploaded into or downloaded from the BPDR. In addition, the
MP supports payment services for commercial artefacts. AI
artefact usage can be conditioned by licensing terms, privacy
requirements or local legislation. Furthermore, hosts available
for artefact execution may belong to various administrative
domains, each free to enforce different policies in terms of
which artefacts and users are allowed to execute on their sys-
tems as well as how resource allocation should be performed.
Therefore, access to hosts and artefacts is coordinated through
the SM to enable compliance with this type of constraints
through a distributed license management system.

In addition, the SM is the fundamental component that
enables mutual authentication and functional integrity checks
for the components belonging to a VP. This involves both the
AI artefacts (i. e. , the containers and their contents) as well as
the supporting infrastructure (i. e. , the server hosts executing
the containers). The main concern in this case is that hosts
or containers are tampered with in order to circumvent the
license management system and bypass the usage constraints
associated with an artefact (e. g. , using the artefact without a
valid license). However, as past experience has shown, being
able to counter any attack on the license management system,
including those where malicious code is injected into the
system, is a very difficult issue. Therefore, we make a set of

4

TABLE II: Security entities in Bonseyes

Actor Roles

Bonseyes layer (BL)
Located inside the Docker image.
Manages the authenticity of the
artefact.

Bonseyes module (BM) Located on the Docker host. Man-
ages the authenticity of the host.

Bonseyes’ Private Docker
repository (BPDR)

Remote-accessible storage for
Docker images containing
artefacts.

Marketplace (MP)

Virtual meeting place for Bonseyes
users. Enables artefact, host and
user registration as well as artefact
exchange with the aid of the SM.

Security Manager (SM)

Manages identities and crypto ma-
terial and facilitates authentication
and authorization. Contains a cer-
tification authority (CA). Trust an-
chor for the entire system.

User AI developer creating and execut-
ing pipelines.

Virtual Premise (VP)
A set of Bonseyes registered hosts
(each having a valid BM). Used for
executing one or more pipelines.

reasonable simplifications, shown below, to relax the difficulty
of the problem.

A. Assumptions for the Security Model

We assume that the SM is not compromised and that
administrative domains are not malicious, do not collude with
attackers and do not instrument the hosts to bypass the license
system. Also, we assume that Docker images uploaded to
BPDR are searched for malicious software before becoming
available for download. Furthermore, we assume that the SM
is equipped with a Certificate Authority (CA) that enables it
to issue certificates for other entities in the MP. Essentially,
the SM is the trust anchor for the system. Finally, the SM
is equipped with a HTTPS server capable of certificate-based
authentication.

B. Authentication and Authorization Protocol

Given the aforementioned assumptions, we have defined a
protocol that verifies if a host is allowed to execute an artefact,
and similarly if the artefact is allowed to execute on the given
host. The actors involved in the protocol and their roles are
listed in Table II. The protocol consists of a set of discrete
phases listed below and shown in Fig. 7:

1) Artefact, host, and user registration
2) Host authentication
3) Image integrity check
4) Host (BM) authorisation for execution of artefact
5) Image execution (BL start)
6) Artefact (BL) authorisation for execution on host

In general, phases 1 and 2 can be performed at any
time. However, given a specific artefact-host-user triplet, the
other phases cannot execute correctly before phase 1 and 2
are completed successfully. Artefact registration entails that

Host

BM

Filesystem

CPU

AI Payload

5

2 Host Authentication
3 Image integrity

Image execution
6 BL authorization

1 Host registration

1 Artefact Registration

1 User Registration

4 BM authorization

6

Security
Manager

Fig. 7: Mutual authentication and authorization

an image is created and uploaded to the BPDR. Policies
concerning the artefact execution can also be configured during
this step. Then, the SM adds the BL layer to the image. It also
inserts an artefact identifier (a human readable string) which
is then signed with the SM private key yielding the artefact
ID. This ID is shared by all instances of the same image and
is used when the artefact states its type in phase 6. Finally, the
SM’s root certificate and any intermediate certificates required
for signature verification are added to the trust database in the
image. A message digest (e. g. , SHA-256) is computed over
the final image yielding the image ID. The artefact ID and the
image ID are stored as a pair in the SM database.

For hosts undergoing the registration process, the first step
is to compute their hardware ID (e. g. , by reading specific
entries in the SMBios). The hardware ID is signed with the
host owner’s private key, thus tying the identity of the owner
to the host. The signed hardware ID is denoted as the host
ID. If the host platform contains a trusted platform module
(TPM), the hardware ID can be replaced with the Endorsement
Key (EK) certificate for the TPM. The owner (typically the
system administrator or the AI developer) is responsible for
verifying that hosts are free from malware before taken in use.
As part of the registration, the owner can also specify if there
are restrictions in the use of the host (e. g. , if it is reserved
for a specific developer, or restrained from executing artefacts
from a specific vendor).

The hardware ID, the host ID and any usage policies are
stored in the SM database. The SM generates a software
component called Bonseyes Module (BM), which is installed
on the host. The BM plays the same role for the host as the BL
does for the artefact. Inside the BM there is an asymmetric key
pair and the corresponding certificate, both generated by the
SM specifically for this hardware ID. The SM’s root certificate
and any intermediate certificates are also present inside the
BM.

Developers and host owners need also to register and obtain
user IDs and user certificates (e. g. , in PKCS12/PFX) format).
This is a one time process, and the ID is carried over to
any pipeline or VP that the developer is working on. The
certificates enable seamless client authentication (e. g. , from
a web browser).

The hosts are configured to start the BM after the operating
systems has booted up. This is where phase 2 begins. The
BM will open a HTTPS connection to the SM and use the

5

host ID (and EK certificate1, if available) to authenticate
itself with the SM. The SM will refuse to authenticate hosts
that are missing from registration database or for whom the
authentication fails for any other reason. If the authentication
succeeds, the SM marks the host as available resource. Thanks
to the cryptographic material installed in the previous steps,
both client and server authentication can be performed when
the HTTPS connection is established.

Phase 3 begins when a developer instructs the SM to assign
the pipeline to a VP for execution. Each artefact can be pinned
to a specific host in the VP or the SM can automatically
assign them to hosts based on a predefined policy. The SM
coordinates with the BMs in copying the artefacts to the hosts
and in checking the integrity of the received Docker images
using strong message digests (e. g. , SHA-256).

During phase 4, the BMs request from the SM policies
surrounding the execution of the artefact under the controller
of the developer. The requests are transported over HTTPS and
each request contains the message digest of Docker image,
the host ID, the user ID and a nonce. The message digest
allows the SM to determine the identity of the artefact being
executed, the host ID provides the identity of the host, and user
ID denotes the developer executing the artefact. The purpose of
the nonce is to help SM in constructing identifiers that can be
used to differentiate between multiple instances of an artefact
running on the same host. The requests are transported over
HTTPS.

If the request is accepted, the SM constructs an entry
consisting of five items: image digest, user ID, host ID, nonce
and host IP address. This combination, runtime ID, uniquely
identifies the artefact instance about to be started. The reason
for storing the IP address is to enable SM to open connections
towards the host, if necessary. The SM looks up an existing
host policy specification, based on the contents of entry. If
one is found, it is associated with the entry and stored in an
internal database. The policy specifies the constraints of the
host in running the artefact under the control of user ID. If the
policy allows artefact execution, the SM creates an asymmetric
key pair and a certificate for the artefact instance. The runtime
ID, the associated policy specification, and the key pair and
certificate (if created) are together signed with the SM’s private
key. The signature and the signed items define the host license,
which is sent to the host BM over the HTTPS connection
established previously2.

If the received license specifies that the host is allowed
to execute the artefact, phase 5 can begin and the BL is
started. Otherwise, an error message is sent to the developer
and the artefact execution is aborted. When the BL is started
it expects to find a copy of host license from the BM. This
enables phase 6 to begin. The BL uses the SM public key
to verify the signature from the license and determine if it is
being executed on a genuine host. If that is the case, the BL
constructs a request for SM consisting of the license from BM,
its artefact ID, and a nonce. The BL is not aware of its own
image digest. Therefore, the inclusion of artefact ID in the

1In this case, formal remote attestation is possible.
2The BM will be able to observe the private key transmitted to the BL, but

according to the assumptions in Sec. IV-A, the hosts are not instrumented to
exploit this situation in an undesirable way.

request lets SM detect if the license presented was generated
for a different type of artefact. The request is sent to the SM
over HTTPS. The SM uses the artefact ID to lookup the image
digest stored during phase 1 and compares it with the one
stored in the license. If there is no match, an error is returned
to the artefact which stops execution. Otherwise, the SM looks
up an existing artefact policy specification. If none is found, a
default one is used. The looked up artefact policy is associated
with the runtime ID maintained by SM. The SM prepares then
a reply consisting of the runtime ID and policy specification.
These items are signed by the SM and the resulting artefact
license is transported over the established HTTPS connection
to the BL. The BL learns through the license if it is allowed
to execute the artefact code, or if it is supposed to cease
execution. Also, the BL is expected to forward the license to
the BM before a timeout occurs. In case of a timeout, the BM
will stop BL’s execution. Otherwise, the protocol completes
successfully having created mutual trust and the pipeline can
begin execution.

V. GENERALISATIONS FROM THE VP AS DESIGN CUES
FOR IOT SYSTEMS WITH FLEXIBLE SECURITY

The specifications of the high-level security and trust
requirements and implementation of mechanisms for collab-
orative AI design using pipelines and artefacts gives detailed
insights into the security architectures and mechanisms for IoT
system using similar concepts. We will generalise our findings:

1) Collaborative and distributed workflows in IoT service
chains require security and compliance verification and
enforcement along the workflow, i. e. , in an "horizontal
way" (authentication for cooperation). The policies, e. g. ,
for DRM or privacy, need to be enforced on the involved
IoT element, e. g. , edge devices, along the east/west-
bound interfaces of the artefacts.

2) Code mobility in IoT, i. e. , use of portable container,
requires security and compliance checking on the IoT host,
i. e. , in a "vertical way" (authentication for resources) .

3) The use of a virtualisation concepts and of containers in
IoT need the verification of integrity of containers and
hosts. Therefore, the container and the host need to
implement a module/layer to verify each others integrity.

4) Docker’s container technology is a great tool for
component-based system design for AI system and proba-
bly also for IoT service chains.

5) Docker’s mechanisms to ensure that code in the container
can not be by-passed are still limited.

6) A centralised Security Manager is typically a single-point-
of-failure/attack and needs to be distributed in future.

An initial analysis of the security threads against the VP
is given in [21]. It lists 13 simple threats by unexperienced
malicious users, ranging from by passing license constraints
to artefact execution on wrong VPs, and techniques to protect
against them. While these techniques are not yet fully im-
plemented in the Bonseyes MP and VP demonstrator, their
availability suggests that VP-enabled architectures can be
secured against them. More difficult to solve are advanced
threats from skilled malicious users. A major approach is to
raise the overall trust level by using TPMs.

6

VI. CONCLUSION

The security architecture for the AI marketplace and the
authentication protocol described in Sec. IV are the main
contributions of this paper. In addition, the investigation of
the security, DRM, and trust requirements for pipeline-based
collaborative AI system design and the specification of the
VP enabled the investigation of similar concepts for future
IoT architectures. These IoT systems will apply service chains
where flexible and adaptive security per service is needed.

The suggested solution builds a VP which forms a virtual
boarder around the pipeline or service chain. This chain
facilitates also the slicing of the full infrastructure, i. e. , of
the application infrastructure and of the network. The use of
containers in such IoT systems requires the authentication of
both, containers and execution environments.

Although only Docker containers were considered in this
work, our solution is easily extensible towards other types of
virtualized environments such as KVM, LXC, or VMware.

Container and virtualisation technologies are still rapidly
evolving in their capabilities. Hence, their future capabilities
might impact the features of the VP, e. g. , the VP might
need to enforce that a container starts always the Bonseyes
Layer either by Docker mechanisms or by other verification
mechanisms. Another future feature for the VP might be
the automatic policy compliance matching, enforcement and
eventually policy orchestration, e. g. , using distributed ledgers
[22]. Another future enhancement is the use of distributed
TPMs [23].

ACKNOWLEDGMENTS

The authors would like to thank the Bonseyes team for extensive
discussions, in particular our gratitude goes to Tim Llewellyn, Samuel
Fricker, Lorenzo Keller and Yuliyan Maksimov. This project has re-
ceived funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No 732204 (Bonseyes).
This work is supported by the Swiss State Secretariat for Education
Research and Innovation (SERI) under contract number 16.0159. The
opinions expressed and arguments employed herein do not necessarily
reflect the official views of these funding bodies.

REFERENCES

[1] F. Mattern and C. Floerkemeier. From the Internet of Computers to the
Internet of Things. In From active data management to event-based
systems and more. Springer, 2010.

[2] ITU-T. Overview of the internet of things. ITU-T Recommendation
ITU-T Y.4000/Y.2060 (06/2012), 6 2012.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog Computing and
its Role in the Internet of Things. In Proceedings of the First MCC
workshop on Mobile cloud computing, 2012.

[4] T. Taleb et al. On multi-access edge computing: A survey of the
emerging 5G network edge cloud architecture and orchestration. IEEE
Communications Surveys & Tutorials, 19(3):1657–1681, 2017.

[5] V. Sciancalepore, F. Cirillo, and X. Costa-Perez. Slice as a Service
(SlaaS) Optimal IoT Slice Resources Orchestration. In Proc. of
GLOBECOM 2017, 2017.

[6] Raspberry Pi Foundation. Raspberry Pi. www.raspberrypi.org.
[7] L. Tung. Raspberry Pi: 14 million sold, 10 million made in the

UK. ZDnet Information available at:https://www.zdnet.com/article/14-
million-raspberry-pis-sold-10-million-made-in-the-uk/, 2017.

[8] P. Bellavista and A. Zanni. Feasibility of Fog Computing Deployment
Based on Docker Containerization over RaspberryPi. In Proc. of the
18th Int. Conf. on Distributed Computing and Networking, 2017.

[9] P. Mohagheghi and R. Conradi. An empirical investigation of software
reuse benefits in a large telecom product. ACM Transactions on
Software Engineering and Methodology (TOSEM), 17(3):13, 2008.

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg,
Omega, and Kubernetes. Queue, 14(1):10:70–10:93, January 2016.

[11] G. Press. TechRadar: 6 Hot Internet of Things (IoT) Se-
curity Technologies. Forrester Research Information available
at: https://www.forbes.com/sites/gilpress/2017/03/20/6-hot-internet-of-
things-iot-security-technologies, 2017.

[12] H. Gantikow, C. Reich, M. Knahl, and N. Clarke. Providing security in
container-based hpc runtime environments. In International Conference
on High Performance Computing, pages 685–695. Springer, 2016.

[13] R. Yasrab. Mitigating docker security issues. arXiv preprint
arXiv:1804.05039, 2018.

[14] C. C. Wood. Why information security is now multi-disciplinary, multi-
departmental, and multi-organizational in nature. Computer Fraud &
Security, 2004(1):16–17, 2004.

[15] J. Sifakis. System Design in the Era of IoT? Meeting the Autonomy
Challenge. In Proc. of the 1st Int. Workshop on Methods and Tools for
Rigorous System Design (MeTRiD 2018), 2018.

[16] R. Roman, J. Lopez, and M. Mambo. Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges. Future
Generation Computer Systems, 78:680–698, 2018.

[17] S. Yegulalp. Data in, intelligence out: Machine learning pipelines
demystified. Information available at: www.InfoWorld.com, August
2018.

[18] D. Baylor et al. TFX: A tensorflow-based production-scale machine
learning platform. In Proc. of 23rd ACM SIGKDD. ACM, 2017.

[19] T. Llewellynn and other. Bonseyes: platform for open development of
systems of artificial intelligence. In Proc. of the Computing Frontiers
Conference. ACM, 2017.

[20] M. de Prado, J. Su, R. Dahyot, R. Saeed, L. Keller, and N. Vallez. AI
Pipeline – Bringing AI to You. Submitted; available on request from:
https://www.bonseyes.com/, 2018.

[21] V. A. Mehri, D. Ilie, and K. Tutschku. Privacy and DRM requirements
for collaborative development of ai application. In Proceedings of
ARES. ACM, Hamburg, Germany, August 2018.

[22] Tim Swanson. Consensus-as-a-service: a brief report on the emergence
of permissioned, distributed ledger systems. Report available at:
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-
distributed-ledgers.pdf, 2015.

[23] P. Wagner et al. Distributed usage control enforcement through trusted
platform modules and sgx enclaves. In Proc. of 23rd ACM on Symp.
on Access Control Models and Tech. ACM, 2018.

7

