
Symbolic Path Tracing to Find Android
Permission-Use Triggers

Kristopher Micinski
Haverford College

Haverford, PA
kris@cs.haverford.edu

Thomas Gilray
University of Alabama

Birmingham, AL
gilray@uab.edu

Daniel Votipka
University of Maryland

College Park, MD
dvotipka@cs.umd.edu

Michelle L. Mazurek
University of Maryland

College Park, MD
mmazurek@cs.umd.edu

Jeffrey S. Foster
Tufts University
Medford, MA

jfoster@cs.tufts.edu

Abstract—Understanding whether Android apps are safe re-
quires, among other things, knowing what dynamically triggers
an app to use its permissions, and under what conditions. For
example, an app might access contacts after a button click,
but only if a certain setting is enabled. Automatically inferring
such conditional trigger information is difficult because Android
is callback-oriented and reasoning about conditions requires
analysis of program paths. To address these issues, we introduce
Hogarth, an Android app analysis tool that constructs trigger
diagrams, which show, post hoc, what sequence of callbacks,
under what conditions, led to a permission use observed at run
time. Hogarth works by instrumenting apps to produce a trace
of relevant events. Then, given a trace, it performs symbolic path
tracing—symbolic execution restricted to path segments from
that trace—to infer path conditions at key program locations,
and path splicing to combine the per-segment information into
a trigger diagram. We validated Hogarth by showing its results
match those of a manual reverse-engineering effort on five small
apps. Then, in a case study, we applied Hogarth to 12 top apps
from Google Play. We found that Hogarth provided more precise
information about triggers than prior related work, and was able
successfully generate a trigger diagram for all but one permission
use in our case study. Hogarth’s performance was generally good,
taking at most a few minutes on most of our subject apps. In
sum, Hogarth provides a new approach to discovering conditional
trigger information for permission uses on Android.

Index Terms—Symbolic execution, Android, symbolic path
tracing, triggers

I. INTRODUCTION

Android apps must request permissions before accessing
sensitive resources such as the user’s microphone or location.
However, on their own, permissions are insufficient for au-
diting an app’s actual security implications [1]–[4]. This is
because the presence of a permission alone does not convey
why the permission will be used.

In this paper, we propose to shed light on why apps use
permissions by introducing the concept of trigger diagrams,
which describe paths through an app that lead to a permission
use. For example, Figure 1 shows trigger diagram explaining
a case in which the Ovia Pregnancy app accesses the user’s

Fig. 1: Trigger diagram for the Ovia Pregnancy app.

location. The nodes of the graph are either callbacks invoked
by the Android framework or permission uses in the app.
An edge from one node to another indicates control flow,
and edges are labeled with path conditions: logical formulas
that must hold when the control flow occurs. For example,
this diagram shows a case in which, when the app goes off
screen (i.e., when onStop is called by Android), it starts a new
thread whose run method uses location. Examining the path
conditions reveals, among other things, that the app checks
that it has permission to access location before using it along
this path (we provide a detailed overview in Section II). Thus,
trigger diagrams can help elucidate the circumstances of a
permission use, which could potentially be useful for tasks
such as auditing app behavior and reverse engineering.

In theory, trigger diagrams could be constructed using static
analysis, but this is impractical. The key challenge is that
apps are tightly coupled with the Android framework, i.e.,
significant control and data flow occur through the framework.
Yet the framework is not amenable to precise static analysis,
because it is large, complex, and includes native code. Thus,
we cannot statically analyze an app in tandem with the
framework. To alleviate this problem, some researchers have
explored developing Android framework models [5]–[12], but
Android has tens of thousands of methods, and, to date, there is
no modeling approach that scales to all of Android. As a result,
while other researchers have explored a range of problems
related to trigger diagrams [6], [9], [10], [12]–[16], no prior
work has demonstrated a scalable, precise technique that could
be used to construct them.

To remedy this situation, in this paper, we introduce Hog-
arth,1 a novel Android app analysis tool for inferring trigger

1Named after one of the main characters in the movie The Iron Giant. Just
because.

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23083
www.ndss-symposium.org

mailto:kris@cs.haverford.edu
mailto:gilray@uab.edu
mailto:dvotipka@cs.umd.edu
mailto:mmazurek@cs.umd.edu
mailto:jfoster@cs.tufts.edu

Bytecode
rewriting &

instrumentation

Symbolic path
tracing

Path splicing

Android APK Permission use of interest

Trace
generation

Passes modified APK Passes modified APK
& set of logged traces

Passes set of recovered
symbolic traces

Trigger Diagram

Fig. 2: Hogarth’s architecture.

diagrams. The key insight behind Hogarth is to use dynamic
analysis, rather than static analysis. More specifically, Hogarth
works by instrumenting apps to produce a trace of relevant
events. The user runs the app to generate a set of execution
traces, and then Hogarth generates a trigger diagrams for
selected permission uses within those traces.

Hogarth uses two core technical ideas to construct trigger
diagrams from traces. First, it observes precisely what objects
are registered as callbacks, and what callbacks are invoked
by Android. For example, in Figure 1, this allows Hogarth
to determine that there is control flow from onStop, which
registers flurry.Task, to the latter’s run method. Because Hog-
arth observes registrations and callbacks at runtime, it does
not need a precise model of Android—it only needs to know
which methods could possibly register callbacks.

Second, to infer path conditions, Hogarth uses what we
call symbolic path tracing and path splicing. Given the target
permission use, Hogarth performs symbolic execution from the
start of the callback containing that permission use. Critically,
however, Hogarth only follows the path observed in the trace.
Again, this obviates the need for a precise framework model,
because, via the trace, Hogarth has an exact, realizable path
that reaches the permission use of interest. During symbolic
execution, Hogarth replaces concrete values returned from
the Android framework with symbolic variables whose names
describe where the value came from, either framework calls or
fields. The result is a path condition that describes that path
segment in terms of those symbolic variables. For example,
this allows us to see the location permission check along
the path in Figure 1. Hogarth repeats this process, working
backward from handler to handler until it reaches a root, which
is the trigger. In effect, this novel design allows Hogarth to
turn a concrete execution trace into a more general description
of what happened in the app along that path. Moreover,
Hogarth achieves all this without needing app source code
or a detailed framework model. (Section III describes trigger
diagram inference formally.)

Hogarth is implemented on top of Redexer [17], a Dalvik
bytecode rewriting tool, and SymDroid [18], a Dalvik bytecode
symbolic executor we modified extensively. To achieve suffi-
cient tracing performance, Hogarth uses a fast parallel queue to
buffer runtime traces and write them to a file with a separate
thread. Hogarth elides some information, specifically about
arrays, from path conditions to make them more readable.
Finally, Hogarth invokes symbolic path tracing in a demand-
driven fashion to reduce the amount of code that must be

symbolically executed. (Section IV describes Hogarth’s im-
plementation in more detail.)

To validate the Hogarth prototype, we applied it to a set
of five apps selected from F-Droid [19] and the Contagio
Malware dump [20]. We found that Hogarth discovers trigger
diagrams that match information one of the authors produced
manually with a time-consuming reverse engineering effort.

We also performed a case study in which we applied
Hogarth to 12 top apps from Google Play, chosen from a
dataset from a prior related paper [16]. We found that Hogarth
successfully identified triggers that could not be resolved by
the prior work, which used a simpler temporal heuristic to find
triggers [16]. Hogarth also allowed us to effectively understand
why apps were using permissions. For example, we were able
to determine that one app (Doctor on Demand) checked to see
whether the user had selected to visit a nearby doctor before
polling for location data, and that another (Samsung Cloud
Print) compared the user’s country code to ensure they were
in the US or South Korea before accessing their phone number.
Finally, we found that Hogarth generally performs well, e.g.,
Hogarth can build a model of the location permission in
Grubhub in 46 seconds, given a 4.4 million line log. (Section V
discusses our evaluation.)

In summary, Hogarth introduces a new approach to con-
struct trigger diagrams showing the cause and the conditions
leading to a target permission use. While Hogarth focuses on
Android and permission uses, we believe our approach can be
used for debugging, reverse engineering, and other auditing
purposes more generally.

II. OVERVIEW

Figure 2 shows Hogarth’s architecture. Its input is an
Android APK file, which contains the app’s Dalvik bytecode.
Hogarth’s first step is to instrument the app so that, when run,
it produces a trace of the app’s execution. For performance
reasons, the trace is sparse in that it only logs key program
points needed to reproduce the observed execution.

The user runs the modified app to produce one or more
traces and selects a permission use of interest (more precisely,
an Android API call that requires a permission). Hogarth
then performs symbolic path tracing to infer path conditions
for various program points that were observed in the trace.
A path condition is a formula over inputs to the callback
(including values it receives from the Android framework) that
holds whenever that program point is reached. Finally, Hogarth
performs path splicing to work backward from the permission

2

Mtd > 1 BaseActivity.onStop(SplashActivity@207023171)
...
BBEntry 1 2477570
API > 1 Handler.post(Handler@...,flurry.Task@2..02)
API < 1 Handler.post()
...
Mtd < 1 BaseActivity.onStop()

Mtd > 181 flurry.Task.run(flurry.Task.run@222621802)
...
BBEntry 181 2471390
API > 181 LocationManager.requestLocationUpdates(...)
API < 181 LocationManager.requestLocationUpdates()
...
Mtd < 181 flurry.Task.run()

Fig. 3: Two partial traces for Ovia.

use to find its triggers, connecting all such paths together to
yield a trigger diagram.

In the remainder of this section, we illustrate how Hogarth
can be used to produce the diagram in Figure 1. (Hogarth cur-
rently outputs a textual description of the graph; we manually
drew the visualization in the figure.)

a) Bytecode Instrumentation and Trace Generation:
Hogarth adds logging instrumentation to app bytecode using
Redexer [17], a Dalvik bytecode rewriting tool. First, we
use Redexer to statically link our logging library into the
app. Our logging library contains a new method log(. . .) that
writes its arguments and the current thread id to a Con-
currentLinkedQueue. Our logging instrumentation creates a
background thread to dequeue log entries and asynchronously
write them to a file. This helps ensure logging does not slow
down the main app thread.

Then, we add calls to log(. . .) to record key events. More
specifically, we insert code to record the class and identity of
the method’s arguments (including the receiver object) at every
method’s entry. For example, we add logging to the beginning
of the BaseActivity.onStop handler within Ovia. We also log
the arguments and return values of every API call. Finally,
we insert a call to log(. . .) at the entry of every basic block.
Hogarth uses this information later in its process to recover
exact control flow.

Figure 3 shows two portions of the trace generated by
running the instrumented Ovia app. The trace at the top is
for flurry.Task.run, which is an app method as indicated by the
Mtd > line in the log. Because this trace entry is not nested
inside any other method call entry, Hogarth infers that this is a
callback invoked by the Android framework. That same trace
line lists the thread id (in this case 1) so that Hogarth can
distinguish otherwise intertwined log entries from different
threads. It also includes the method arguments, in this case
just the receiver object. Objects are recorded as the object’s
class followed by the object’s Java id (every object has a
unique integer id in the Java runtime). Note that, to improve
performance, we do not record object fields. Hogarth only uses
object ids to identify callbacks (discussed more below).

The line BBEntry 1 2477570 records the entry to basic block

numbered 2477570 (a number assigned by Hogarth during app
instrumentation). Hogarth uses this information later during
symbolic path tracing to decide which way to follow branches.

The next two lines record the call to (API > 1) and return
from (API < 1) Handler.post, an Android API method. Redexer
marks a call API whenever it cannot find the target method
in the app’s method definitions. In this case, the call to
Handler.post asks Android to create a thread for the flurry.Task
object passed as its second argument. Finally, the last line in
the top portion of the figure indicates the return from onStop.

The bottom portion of Figure 3 shows a portion of the trace
for the subsequent execution of flurry.Task.run. Note that in
general, arbitrary other trace elements might occur between
the top and bottom portions of the trace, depending on the
Android scheduler. (For this particular trace, several other
threads do execute between the post and the run.) Once the
run method begins, it eventually enters a basic block that
calls requestLocationUpdates, which is an Android framework
method that requires the location permission.

b) Symbolic Path Tracing: Next, Hogarth performs sym-
bolic path tracing by running symbolic execution [21], [22]
from the start of each relevant callback, stepping through that
method’s instructions and those of any called app methods,
until it reaches target points in the trace. (We discuss exactly
where Hogarth starts and stops symbolic path tracing below.)
For each target point, Hogarth records the path condition
generated by symbolic execution. Whenever Hogarth reaches a
branch, it follows the path taken in the trace, which is apparent
from the BBEntry trace items.

For example, Hogarth begins symbolic path tracing at
onStop. The receiver this is bound to an abstract value
representing the actual value seen in the log, in this case
SplashActivity@207023171. As Hogarth continues, it builds
more complex abstract values to encode primitive operations
and represent returns from framework calls, as necessary. As
Hogarth branches, it conjoins the branch condition on to the
path condition, which is initially just true. For example, when
Hogarth eventually reaches the call to Handler.post in Ovia,
Hogarth obtains the following path condition φ1:

new35 6= 0 ∧ staticfd113.c.a.get(argument0.f)).iterator().hasNext()
∧ !argument1.isChangingConfigurations() ∧ !argument0.f.isEmpty()
∧ staticfd12.c.a.get(argument0.f) 6= 0 ∧ new34.iterator().hasNext()

This path condition mentions objects created by the app,
e.g., new35 is an object created at source location 35. The
actual trace includes the object id; we have abbreviated for
clarity. The path condition also mentions the state of static
fields, e.g., functions on staticfd113, as well as functions
on the state of the arguments, e.g., !argument1.isChanging-
Configurations() asserts that the app is not currently changing
screen configurations.

Similarly, when Hogarth executes flurry.Task.run, it will
eventually reach the call to requestLocationUpdates with the
path condition φ2:

3

“passive” 6= 0 ∧ staticfd113 6= 0 ∧ new18.x ≥ new19.y
∧ staticfd50.c.getSvc(“connectivity”).isConnected()
∧ com.flurry.sdk.fd.class 6=0∧ !staticfd18.isEmpty()
∧ staticfd50.c.getSvc(“connectivity”).getActiveNetworkInfo 6=1
...
∧ staticfd50.c.checkCalling..Permission(“ACCESS_FINE_LOCATION”)

This path condition mentions the state of many global
variables, but most relevant to our analysis are the framework-
related calls to check the state of the connectivity service and
the check that the app has permission to access location.

c) Path Splicing: Finally, Hogarth performs path splic-
ing, which connects the symbolic path traces together and
summarizes them to construct a trigger diagram. Hogarth
invokes symbolic path tracing on-demand during path splicing.
This final step begins with a user-specified permission use. In
this case, we choose the call to requestLocationUpdates in
Figure 3. Hogarth then begins working backward. Since this
call occurred during flurry.Task.run, Hogarth adds a node for
that callback to the diagram, runs symbolic path tracing from
the start of the callback to the permission use, and then adds an
edge between the nodes, labeled with the path condition φ2.
If there were multiple such path conditions, Hogarth would
label the edge with the disjunction of the path conditions.

Next, Hogarth determines where the callback flurry.Task.run
was registered. Hogarth heuristically looks for calls to API
methods that register callbacks according to the Edge-
Miner [23] dataset. Hogarth assumes that any such call where
the argument matches the value bound to this in the callback—
here, flurry.Task.run@222621802—was responsible for regis-
tering the callback. In our example, this occurred in the call to
Handler.post. Thus, Hogarth runs symbolic path tracing from
the beginning of the callback containing the registration up to
that registration point, adding appropriate nodes and edges to
the diagram. In this case, there will be an edge from onStop
to run labeled with φ1.

This process continues until Hogarth can find no more
matching callback registrations. In our example, Hogarth stops
with onStop.

In addition to using EdgeMiner to determine callback con-
nections, there are some cases where this is not possible (e.g.,
Intent passing), so Hogarth adds extra metadata to certain
objects to help establish these connections. We discuss this
further in Section IV.

d) Reviewing Trigger Diagrams: Finally, we use the
resulting trigger diagram to investigate the circumstances
under which permissions are used. An expert can use the
diagrams to make a range of decisions or to aid more general
reverse engineering tasks. In our experiments (Section V), we
systematically considered each node in the trigger diagram and
studied the path condition generated by Hogarth. For example,
in Ovia, the first use registered the thread when the app was
not restarting the screen, and used the user’s location through
an analytics library after ensuring it had permission to do so.
In the second permission use we examined, the app accessed
the filesystem to store cached data as the result of a network
request performed by the app.

prog ::=
−−−→
class

class ::= C <: C
−−−−→
method ~f

method ::= m(~r) ~i
i ::= goto j | if r then j | r ← c | r ← r | r ← r ⊕ r

| r ← r.f | r.f ← r | r ← new C | r ← r.m(r, . . .)
| ret r

c ::= n | str | true | false
⊕ ::= {+,−, ∗, <,¬,∧,∨, . . .}

C ∈ classes m ∈ methods
f ∈ fields r ∈ regs
n ∈ integers str ∈ strings

Fig. 4: Simplified Dalvik bytecode.

III. TRIGGER DIAGRAM INFERENCE

This section gives a formal presentation of our symbolic
path tracing analysis to find triggers. To keep our presentation
compact, we describe our approach using the simplified Dalvik
bytecode language in Figure 4. Here and below, we write
~x for a sequence of zero or more x’s, and we write xi to
signify the ith element of such a sequence (starting from index
0). In this language, a program prog consists of a sequence
of class definitions

−−−→
class . A single class definition consists

of a class name C, its superclass, a sequence of method
definitions

−−−−→
method , and a sequence of field names ~f . Each

method definition includes the method name m, a sequence
of registers ~r for the formal parameters, and a sequence of
instructions ~i for the method body.

Instructions are fairly standard. An unconditional jump
goto j sets the program counter so the instruction at index
j is executed next. A conditional jump if r then j branches to
instruction j if the content of register r is true. Assignments of
the form r ← c write a constant integer, string, or boolean into
register r; assignments r1 ← r2 copy r2 to r1; and assignments
r1 ← r2⊕r3 apply some operation ⊕ to r2 and r3, storing the
result in r1. Fields are read with r1 ← r2.f and written with
r1.f ← r2. Allocation r ← new C creates a fresh instance
of class C and stores a pointer to it in r. Method invocation
r ← r0.m(r1, . . .) performs dynamic dispatch of method m
with the given receiver r0 and arguments r1, . . ., assigning the
result to r. Lastly, ret r exits the current method, returning r.

Note that this language omits many features of Dalvik
bytecode, such as arrays, static methods and fields, etc. We
discuss details of handling full Android apps in Section IV.

A. Trace Generation

As previously discussed, we begin by instrumenting and
executing the program to gather a set of traces. In our
implementation (Section IV), we modify the app’s bytecode
to add tracing instrumentation. Here we elide that step, and
simply describe the trace this instrumentation yields.

Figure 5 gives a grammar for program traces pt , which
consist of a sequence of callback traces ~ct . Each callback
trace records what happens from the time Android invokes an
app callback to the time the callback returns to the framework.

4

pt ::= ~ct [program trace]
ct ::= C.m(~v) ~ti [callback trace]
ti ::= C.m [app call]

| C.m(~v) [API call]
| then | else [branch]

v ::= ε | C@id [value]

Fig. 5: Traces.

A callback trace C.m(~v) ~ti records the class C and method
m called by the framework, along with the argument values
~v , where v0 encodes the method receiver. Each value is either
ignored, written ε, or a class C paired with an id , written
C@id . In our implementation, we log all constants as ε
for performance reasons (specifically, writing all strings to
the trace is expensive). Notice that we do not record object
fields—we only record object addresses to match up callback
registrations to the actual callbacks, as discussed below.

Each callback trace also includes a sequence of trace items
~ti that occurred during the callback. There are four kinds of
trace items. First, C.m logs a call to an app method m of
class C. We elide arguments because these will be recovered
via symbolic execution. Second, C.m(~v) logs a call to an
API method m of class C. In this case, we do record the
argument values ~v since they may include possible callback
registrations. Lastly, then and else log which way each if
instruction branched. These model the BBEntry trace entries
in Section II.

B. Symbolic Path Tracing

Figure 6 formalizes symbolic path tracing, which symbol-
ically executes a program along the path in a given trace.
Hogarth uses symbolic path traces as a subroutine when
constructing a trigger diagram.

We describe symbolic path tracing as a series of oper-
ational rules over machine states 〈~i, rf , κ, φ, ~ti〉. Here ~i is
the sequence of instructions remaining to be executed. The
register file rf maps registers to abstract values a, which in-
clude constants, object ids paired with classes, and operations
among abstract values, which are standard. Abstract values
also include r, which stands for the value read from a register
(here, always a method parameter); a.f , which stands the value
read from a field of an object; and C.m(~a), which stands for
the value returned from an API call with arguments ~a (where,
again, the first argument is the receiver object). These last
three forms allow Hogarth to track the conditions on “inputs”
to the callback from parameters or from values returned by
the Android framework.

Each machine state also includes a stack κ, a (possibly-
empty) sequence of triples (r, rf ,~i), where r is the register to
be written upon returning, rf is the previous register file to
reinstate, and ~i is the sequence of instructions to resume upon
returning. The last two items in the machine state are the path
condition φ, a (boolean) abstract value, and ~ti , the remaining
trace to be followed.

state ::= 〈~i, rf , κ, φ, ~ti〉 [machine state]
rf : regs ⇀ a [register file]
κ ::= ε | (r, rf ,~i) :κ [stack]
φ ::= a [path condition]
a ::= c | C@id | ⊕~a [abstract value]

| r | a.f | C.m(~a)

(a) Abstract machine domains.

〈goto j :~i, rf , κ, φ, ~ti〉 〈instr(j), rf , κ, φ, ~ti〉 [Jump]

〈if r then j :~i, rf , κ, φ, then : ~ti〉 [Then]
〈instr(j), rf , κ, rf (r)∧φ, ~ti〉

〈if r then j :~i, rf , κ, φ, else : ~ti〉 [Else]
〈~i, rf , κ,¬rf (r)∧φ, ~ti〉

〈r ← c :~i, rf , κ, φ, ~ti〉 〈~i, rf [r 7→ c], κ, φ, ~ti〉 [AssnC]

〈r ← r′ :~i, rf , κ, φ, ~ti〉 〈~i, rf [r 7→ rf (r′)], κ, φ, ~ti〉 [AssnR]

〈r1 ← r2 ⊕ r3 :~i, rf , κ, φ, ~ti〉 [AssnOp]
〈~i, rf [r1 7→ ⊕(rf (r2),rf (r3))], κ, φ, ~ti〉

〈r′′ ← r.m(~r) :~i, rf , κ, φ, C.m : ~ti
′〉 [Call]
〈~i′, rf ′, κ′, φ, ~ti

′〉
where rf ′ = [~r′ 7→ rf (~r)] ∧m(~r ′) ~i′ = lookup(C.m)

∧ κ′ = (r′′, rf ,~i) :κ

〈ret r :~i, rf , (r′, rf ′,~i′) :κ, φ, ~ti〉 [Ret]
〈~i′, rf ′[r′ 7→ rf (r)], κ, φ, ~ti〉

〈r′ ← r.f :~i, rf , κ, φ, ~ti〉 〈~i, rf ′, κ, φ, ~ti〉 [AssnF]
where rf ′ = rf [r′ 7→ a.f] ∧ a = rf (r)

〈r.f ← r′ :~i, rf , κ, φ, ~ti〉 〈~i, rf , κ, φ, ~ti〉 [FWrite]

〈r ← new C :~i, rf , κ, φ, ~ti〉 [New]
〈~i, rf [r 7→ C@id], κ, φ, ~ti〉 where id fresh

〈r′ ← r.m(~r) :~i, rf , κ, φ, C.m(~v) : ~ti〉 [API]
〈~i, rf [r′ 7→ C.m(rf (~r))], κ, φ, ~ti〉

(b) Abstract machine semantics.

Fig. 6: Formalism for symbolic path tracing.

Figure 6b lists the machine’s operational rules. [Jump] re-
places the instruction sequence with those at the target address,
using helper function instr(j) (not formalized). [Then] and
[Else] handle conditional branches, using the observed trace
to guide the machine. When the head of the trace is then, the
concrete execution took the true branch, so [Then] conjoins
the branch condition rf (r) to the current path condition φ
and jumps. When the head of the trace is else, execution fell
through, so [Else] simply steps past the branch instruction and
conjoins the negation of the branch condition with the path
condition.

[AssnC], [AssnR], and [AssnOp] update the register file so
the left-hand side register r maps to the given constant, register
contents, or operation, respectively.

[Call] handles an invocation of one of the app’s methods.

5

At these control points, the log has recorded C.m, the class
and method that was invoked at run time. Thus, the rules use
lookup (not formalized) to retrieve the corresponding method
definition. [Call] then pushes the return register, the current
register file, and the remaining instruction sequence onto the
stack. It then begins executing the callee’s instructions under a
new register file mapping the formal parameters to the actual
arguments. [Ret] handles a return by popping the stack frame
and updating the return register.

The remaining rules introduce abstract values that represent
data from “outside” the current method, i.e., from fields and
from the framework. [AssnF] looks up the value stored in a
register and produces an abstract value representing its field f .
[FWrite] is a simply no-op, since any subsequent read of the
field will represent the read symbolically. [New] handles an
allocation, in which a fresh id (meaning one not chosen before
and not in the trace) is paired with C and bound in the register
file. Finally, [API] binds an abstract value representing the call.
Notice this is similar in spirit to reading a field, where rather
than try to model a value coming from outside the method,
we simply track where it came from.

To build the trigger diagram, described next, Hogarth runs
symbolic path tracing on each relevant handler in the trace.
Hogarth starts at the beginning of the handler and runs until
reaching a particular instruction—either the target, permission-
using API call, or an intermediate callback on the way to that
API call.

Given a program trace pt = ct0, ct1, . . . and a particular
ctj = C.m(~v) ~ti , we write C.m(~v) ~ti ∗ state if state is
reachable in zero or more steps of the machine starting in the
initial (entry-point) state, defined as

〈lookup(C.m), rf [ri 7→ a(ri, vi)], ε, true, ~ti〉
where a(ri, C@id) = C@id

and a(ri, ε) = ri

Here we begin with the instructions of the target method and
a register file where each formal parameter ri is bound to
a(ri, vi). The initial stack is empty, the initial path condition
is true , and the initial sequence of trace items comes from the
callback trace.

C. Path Splicing

Finally, we can construct the trigger diagram by splicing
together the paths that lead to the permission use. For purposes
of this discussion, we assume we have run symbolic path
tracing on every callback to every possible location. In our
actual implementation (discussed next), we do so on demand
to improve performance.

We begin by choosing an API call C.m(~v) of interest in
the trace—in our application, this is an API call that requires
a permission. Then we add an edge C ′.m′(~v′)

φ−→ C.m(~v) to
the diagram for the C ′.m′(~v′) ~ti

′
∈ pt such that

C ′.m′(~v′) ~ti
′
 ∗ 〈_, _, _, φ, C.m(~v) : ~ti〉

for some φ. In other words, we add nodes for the callback
that contains the target call and for the call itself, and we add
an edge between them labeled with the path condition from
symbolic path tracing. For example, this corresponds to the
edge from flurry.Task.run to location in Figure 1.

Next, until we reach a fixed-point, we pick a node C.m(~v)
in the graph and find all C ′.m′(~v′) ~ti ∈ pt such that there
exists a state

〈_, _, _, φ, C ′.m′(~v′) : ~ti
′
〉,where ~v0 = ~v′i, for some i

and add an edge C ′.m′(~v′)
φ−→ C.m(~v) to the trigger diagram.

In other words, we work backward from the target permission
use, adding edges from registrars to callbacks until we can
add no more such edges. A call is considered a registration
if one of its arguments (~v′i) is the callback receiver (~v0). In
our implementation, we further restrict this step to methods
known to be callback registrars.

Finally, we compress the diagram slightly. Notice that, as
constructed so far, the diagram may have multiple edges, with
different path conditions, between the same pair of nodes.
To create the final trigger diagram we combine these edges.
For every connected pair of nodes C ′.m′(~v′) and C.m(~v) we
consider all their path conditions

C ′.m′(~v′)
φ0−→ C.m(~v) C ′.m′(~v′)

φ1−→ C.m(~v) . . .

and replace them with a single edge

C ′.m′(~v′)
φ0∨φ1∨...
−−−−−→ C.m(~v)

In our implementation, we perform some further simplifica-
tions to make the diagrams easier to read.

IV. IMPLEMENTATION

We implemented Hogarth using Redexer [17] and Sym-
Droid [18], the latter of which we had to extend significantly.
Our code was written in Java (for the logging machinery)
and OCaml (for additions to Redexer and for symbolic path
tracing), and comprises around 10K lines of code. In the
rest of this section we discuss several unique challenges
in implementing Hogarth. An artifact for our submsision is
available at the following URL:

https://go.umd.edu/hogarth-bar-2019

a) Logging instrumentation: In practice, it is crucial to
ensure Hogarth’s instrumentation does not affect app perfor-
mance too much, especially in the UI thread, since Android
kills applications whose UI thread becomes non-responsive.
Thus, our inserted log calls do not perform logging directly.
Instead, they add messages to a ConcurrentLinkedQueue,
which uses a wait-free algorithm to communicate with a
separate worker thread that retrieves messages from the queue
to produce the trace output. In total, the message passing
interface adds between 10 and 20 Dalvik instructions for each
inserted log call, depending on the number of arguments.

In our formalism, API calls always return to app code with-
out any intervening calls to the app. But in practice, this may

6

https://go.umd.edu/hogarth-bar-2019

not hold. For example, within a call to java.util.Collections.sort,
the framework will call a compare from the app, which will
contain logging calls. Our implementation handles this case
by extending the symbolic executor to support a nested stack
for the call from the framework to the app.

b) Symbolic Path Tracing: Recall that the abstract values
in Figure 6a have a fairly rich structure. Hogarth encodes
registers, field accesses, and method calls as symbolic vari-
ables with special names. For example, an API call value
C.m(a) where C is a BufferedReader, m is a readLine, and
a is a new C ′, may be encoded as a symbolic variable
named BufferedReader.readLine(new56) where 56 refers to a
particular allocation site.

One issue arises from this encoding: in the presence of
loops, we may reuse a symbolic name. This may cause the
same symbolic variable to stand for multiple values, which
might then yield multiple, possibly contradictory path condi-
tions. To sidestep this issue, we observe that path condition
clauses relevant for permission uses typically do not involve
variables that change with loop iterations. Thus, if Hogarth is
in a loop and is about to reuse a symbolic variable already
in the path condition, it heuristically removes all clauses
involving that variable before reusing it, strongly updating its
meaning in the path condition. In practice this means path
conditions only include information about the last iteration of
a loop, which in our experience is the most useful behavior.

As we developed Hogarth, we found that path conditions
contain many abstract values for arrays. These values are often
uninteresting, and their presence makes path conditions harder
to read. Thus, our implementation includes a special abstract
value > that represents any possible abstract value. We model
all arrays as >. Constraints on > are discarded and not added
to the path condition, and abstract values derived from > are
widened to > (e.g., >.f evaluates to >).

A final issue in symbolic path tracing involves <clinit> meth-
ods, which are invoked whenever the Dalvik Virtual Machine
decides to load a class. Because there is no syntactic call site
for such calls, they do not fit well within a trigger diagram.
We opted to simply elide such calls from our analysis, which
is sound because these methods can never register handlers.

c) Inter-callback connections: Recall that we use the
EdgeMiner [23] database to identify possible registrar meth-
ods, and then we connect up a registrar with a callback if the
receiver of the latter was an argument to the former, using
the object id for comparison. While this is largely successful,
there are a few cases where Android reuses the same object
for different callbacks, particularly Intents and Threads; thus
we cannot rely on their object ids. We address this by using
a different id in these cases. For Intents (which are essentially
key-value maps), we add a magic id field that gets a fresh
value each time, and use that in place of the object id. For
Threads, we use the thread id in place of the object id.

d) Demand-driven path splicing: In practice, traces are
quite long—in our experiments, up to around 10 million lines.
Thus, it is important that Hogarth not perform symbolic path
tracing on the entire trace. Instead, Hogarth is demand-driven.

It first divides the trace into segments, one for each top-
level callback. To begin path tracing, all paths in the trace
containing the target permission use are symbolically traced,
and the results are combined and put into the trigger diagram.
Then, Hogarth works backward one callback at a time, running
symbolic path tracing only on callbacks that registered nodes
in the diagram so far. We found this approach achieved
dramatic speedups compared to an earlier implementation that
timed out on even modestly sized logs.

V. EVALUATION

We evaluated Hogarth using two studies. First, we per-
formed a validation study to confirm that Hogarth’s output
is correct. We ran Hogarth on five moderately sized apps for
which the third author had earlier created trigger diagrams
manually. We compared the manual results to Hogarth’s re-
sults and found they were consistent, except Hogarth’s path
conditions were sometimes more verbose and Hogarth missed
some edges because it relies on dynamic traces.

Second, we conducted a case study in which we applied
Hogarth to 12 popular free apps from Google Play and
constructed trigger diagrams for two permission uses per
app. We found that Hogarth allowed us to identify triggers
for each permission use we studied, analyzing most apps
within minutes. Additionally, we found that the path conditions
produced by Hogarth were helpful in identifying why apps
were accessing permissions.

A. Validation Study

To test the correctness of Hogarth, we wanted to compare
Hogarth’s output to ground truth. We selected five apps that
were small enough that they could be manually analyzed by
the third author, a reverse engineering expert with professional
experience. Our expert decompiled each app with JEB [24],
identified API calls corresponding to permission uses, and then
manually read through the code line-by-line to construct a
trigger diagram. JEB simplified the task of manual reverse
engineering by allowing variable renaming and the on-demand
display of all potential static calls for a given function (using
control-flow analysis). We then ran Hogarth on the app and
compared its output to our manual results.

Our first three apps were selected from the F-Droid repos-
itory [19]. Call Recorder [25] allows users to record calls
and store a copy on their device. Hogarth correctly identifies
that the microphone is used after recording is enabled. For
example, Hogarth finds a path condition that mentions the
app’s state being in recording mode, and also that the direc-
tory in which recordings will be stored exists. Misbothering
SMS [26] mutes notifications for any message sent by a user
not in the contacts list. Using Hogarth, we correctly observed
that contacts are accessed by a callback after receiving a
text message. Third, Contact Merger [27] identifies duplicate
contacts by analyzing a user’s contact list and recommending
entries that may refer to the same person. Hogarth identified
the use of the contacts in this app, but failed to observe the use
of contacts whenever a new app was installed, because we did

7

not see this behavior in the generated trace. Incomplete logs,
of course, are a limitation of dynamic analysis.

The next app was SmartStudioProxy, a piece of malware
from the Contagio Malware dump [20]. This app collects a
variety of user data and ships it to an attacker [28]. Hogarth
correctly found the triggers for each permission use in the
trace, but failed to find a path that was triggered every 30
minutes, as we did not run the app that long.

The last app was Camera2Basic, an Android example
app [29] that allows the user to take a picture by pressing
a button. We modified Camera2Basic by injecting the Den-
droid [30] malware, also from the Contagio dump, into it.
Dendroid contacts a remote command-and-control server on a
timer. The app may also secretly take a picture, without the
user pressing a button, and upload it. Hogarth successfully
finds both the legitimate and malicious use of camera in the
modified app. For example, Hogarth generated the following
path condition for the final handler before using the camera:

isConnected(getActiveNetworkInfo(getSystemService("connectivity"))) ∧
getActiveNetworkInfo(...) ∧ readLine(new16) ∧
find(matcher(compile("\(([^)]+)\)"),readLine(new16))) ∧
contains(readLine(new16),"takephoto(") ∧
equals(group(matcher(compile("\(([^)]+)\)"),readLine(new16)),1),"")) ∧
equalsIgnoreCase(get(new7,0),"front(")

This path condition checks that the phone is connected to
the internet and examines the structure of a command received
from the malware command-and-control server, looking for a
takePhoto command for the front-facing camera. Other path
conditions in the app included several clauses our expert did
not report in his analysis because he found them irrelevant
For example, Hogarth will include all loop postconditions
in the path condition; however, not all postconditions will
necessarily be relevant to an auditor’s interpretation of the
eventual permission use.

In sum, Hogarth’s results generally matched the results from
our expert reverse engineer. The key differences were due to
missing possible executions because the analysis is dynamic,
and due to generating more verbose path conditions.

B. Case Study

Next, we applied Hogarth to a range of larger apps to
evaluate its scalability and usefulness in a more realistic settig.
Specifically, we sought to evaluate whether Hogarth could
correctly identify triggers, what information we could learn
from the path conditions it generated, and how it scaled to
large apps. We selected 12 apps from the dataset used by
Micinski et al.’s paper on AppTracer [16], which inferred
information related to trigger diagrams (see Section VI for
more discussion). To choose apps, we ordered Micinski et
al.’s list of apps by the number of permission uses reported in
that paper, most to least. From this list, we chose the first 12
that did not use multidex2, which Hogarth does not currently
support. We considered only apps that included uses of two

2a feature that allows writing apps with more than one Dalvik file to
circumvent bytecode size restrictions

Log Size 1st P.1 Tm 2nd P. Tm
App Name (Lines) (MB) Use Len Steps (s) Use Len Steps (s)
Ovia
Pregnancy 1.7M 11.4 Loc 1 46K 26 Sto 1 12K 24

Grubhub 4.4M 11.8 Loc 1 1.8K 46 Sto 2 98K 66

Flipp 7.9M 7.6 Loc 1 96K 105 Sto 1 1M 175

Call Blocker 10.6K 3.1 Pho 0 1.4K 3 Sto 0 3.1K 200

Ringtone
Maker 10.6K 4.6 Mic 2 4.9K 9 Sto 1 5.4K 9

Blood Donor 10M 10.7 Loc 1 28K 74 Sto 0 3.2K 68

Burger King 1.9M 13 Loc 1 219K 83 Sto 1 106K 27

Doctor On
Demand 7.2M 12.2 Loc 0 97K 75 Sto 2 536K 267

Crackle 2.6M 12.6 Loc 0 11K 31 Sto 2 363K 61

Samsung
Cloud Print 70K 12.8 Pho 2 312K 113 NFC 0 16K 8

AVG
Antivirus 2.2M 11.5 Set – – – Sto 0 20K 26

Tiny Scanner 2M 15.7 Cam 0 1.6K 17 Sto 2 40K 19
1 Loc–Location, Pho–Phone State, Mic–Microphone, Acc–Accounts, Set–User
Settings, Cam–Camera, Sto–External Storage, NFC–Near Field Communica-
tions

TABLE I: Case study results.

different permissions (excluding internet and wifi state, which
AppTracer’s authors considered uninteresting).

We instrumented each app and generated a trace for it by
manually running it. We attempted to cover as much app
behavior as we could find, e.g., by clicking on all buttons and
screens we could (excluding behavior which costs money).
We then used the PScout [31] database to identify API calls
in the trace that required permissions. Next, we chose two
distinct, “interesting” permissions and selected one use of each
at random. Our interesting permissions, in order of priority,
were camera (Cam), microphone (Mic), location (Loc), write
user settings (Set), user accounts (Acc), external storage (Sto),
phone state (Pho), and Near-Field Communication (NFC). For
example, if an app used Mic, Set, and Acc, we chose one
random use of Mic and one random use of Set.

C. Results

The results of our case study are shown in Table I. Each row
in the table corresponds to an app in our dataset. The columns
are split into three parts: app metadata (app name, total number
of logged lines, and size of app bytecode), results for the
first permission use, and results for the second use. For each
permission we report the length of the longest path from the
permission use to the trigger. For example, if an app accessed
location within the onCreate method, this size would be zero.
If the app instead registered a callback via setOnClickHandler
and the use occurred in that callback, the length of the path
would be 1. Last, we report two performance statistics: the
number of instructions Hogarth symbolically stepped through
and the wall-clock runtime (average of three runs). We ran

8

Reason Num. Apps
Check if File Available 5 / 12
Permission Check to Avoid Crashes 5 / 12
Check if Resource Available 4 / 12
User Configuration 3 / 12
Parsing Network Data 2 / 12

TABLE II: Themes Observed in Path Conditions.

Hogarth’s analysis step on an 2.5GHz Intel Core i7, 16GB
RAM, and an SSD, running Mac OS 10.13.1.

a) Triggers: To evaluate the extent to which Hogarth was
useful for determing permission-use triggers, we compared
its output to Micinski et al.’s AppTracer. AppTracer infers
triggers using a dynamic tracing architecture similar to the one
used by Hogarth. However, AppTracer uses a temporal locality
heuristic to attribute permission uses to UI events [16]. This
heuristic can create ambiguities when triggers are temporally
far from their associated permission uses; Hogarth’s symbolic
path tracing was designed to resolve these ambiguities.

We found that, in fact, the data we collected matched App-
Tracer’s results for every permission use where the AppTracer
authors marked themselves as certain. In addition, Hogarth
allowed us to understand triggers for apps about which App-
Tracer provided uncertain results (Ovia, Flip, Cloud Print). In
Grubhub and Ringtone Maker, Hogarth was able to identify
UI-related triggers that AppTracer missed because they were
too far away temporally. We therefore conclude that Hogarth
can successfully improve on AppTracer’s ability to audit
permission-use triggers and identify which are interactive.

b) Path Conditions: Next, we sought to understand how
the path conditions produced by Hogarth could be used to help
understand why permissions were used by apps. To do this, we
examined the path conditions in each of the trigger diagrams.

Most path conditions produced by Hogarth include 20-100
clauses, and we were able to examine all of them within five
minutes. Broadly, we found that path conditions alone allowed
us to understand the app’s interaction with the framework, but
were less helpful at understanding app state. This is because
the Android framework’s semantics is consistent across apps
(for example, several apps call checkSelfPermission to ensure
they have a permission), but understanding parts of the path
conditions related to app state often requires reading the app’s
code. Often this was complicated by obfuscation.

Table II details several themes we observed from looking
at the path conditions from our case study apps. The most
frequent checks we observed in path conditions related to the
app being careful about accessing resources to avoid the app
crashing. For example, Grubhub called File.exists from within
a thread to check that a path exists before writing an app
log file for analytics purposes. Next, several apps checked
that a particular resource (such as fine-grained location or
telephony data) was available before accessing the resource.
For example, Samsung Cloud Print checked to ensure IMEI
was available before accessing it to send to analytics data to
the app’s server. Last, we saw several apps that examined the
app’s configuration or network requests.

We also inspected each of the produced path conditions to
consider how much irrelevant information they contained. We
observed two main cases in which Hogarth produced irrelevant
information. The first was when apps use large third-party
libraries. These libraries are often complicated and generate
many branches, which end up in the app’s path conditions. For
example, Flipp called a networking library to parse data com-
ing from a server, which generated a large number of calls to
equalsIgnoreCase as part of parsing a packet. Second, Hogarth
often produced large path conditions when it examined long-
running threads, which often performed irrelevant operations
before using a permission. In each of these cases, we were
able to inspect the path condition and (within several minutes)
ascertain the relevant aspects of the path conditions.

c) Performance: Finally, we observe that, even given
traces with millions of entries, Hogarth takes at most a few
minutes. Across our experiments, runtime is usually dominated
by the amount of time it takes to parse the log. This is
because symbolic path tracing is performed in a demand-
driven way, only looking at parts of the trace relevant to
the permission use. We observed that, occasionally, Hogarth
explores large and irrelevant portions of the log. This is
because Hogarth performs symbolic tracing on a per-callback
basis. For example, in DoctorOnDemand, Hogarth made 536K
calls to the step function because it explored an execution of
a particular thread that lasted the length of the execution. In
one case, Set in AVG Antivirus, Hogarth timed out because it
explored hundreds of similar threads, each of which had very
long traces. We believe this problem could be addressed by
introducing search heuristics to skip over portions of the trace.

We believe that Hogarth greatly reduces the task of inferring
trigger diagrams. All of the apps in our case study consist of
at least several thousand methods, and Hogarth allowed us to
understand the conditions under which permissions were used
within a few minutes. By contrast, reverse engineering the
apps from our validation study took several hours per trigger.
Our case study apps were much larger and often included
obfuscated code, so we believe that performing this task for
those apps would have been significantly more challenging.

D. Limitations and Threats to Validity

Hogarth has several limitations. First, as Hogarth is a
dynamic analysis, it is necessarily incomplete, i.e., it will find
app behavior covered in at least one trace, but will miss app
behaviors not included in traces. Based on our experience,
however, it still produces useful results. Second, Hogarth relies
on the EdgeMiner dataset to identify possibly callback regis-
trations. We found several instances in which this dataset was
missing certain methods. We thus used an amended dataset
in our experiments, but it is possible we might have missed
some cases. We also needed to add special handling of Intent
objects, which are not callbacks but do effectively trigger other
callbacks to run. Last, Hogarth does not support multidex
(apps with multiple Dalvik bytecode files) or instrumenting
native code, since SymDroid does not include these features.
Both could be added with further engineering effort.

9

There are several threats to the validity of our results. First,
we only study 12 apps in our case study, which may not
be indicative of the Android app landscape as a whole. We
suspect we might have seen different uses of permissions if
we studied lesser-known or explicitly malicious apps. Last,
we do not have ground truth for our case study apps, meaning
our path conditions could fail to include relevant information.
However, we did not observe this in our validation study.

VI. RELATED WORK

Contextual Security Analysis for Android: Several re-
searchers have proposed program analyses that aim to infer the
various aspects of security-relevant actions in Android apps.
Pegasus [12] analyzes apps to infer Permission Event Graphs
(PEGs), which describe the relationship between Android
events and permission uses. In contrast to Hogarth’s trigger
diagrams, PEGs do not include predicates about the app state.
Unlike Hogarth, Pegasus requires a system model to operate,
and its implementation defines models for 64 methods in the
Android API. Unfortunately, this is too small to scale to any
to any of the apps we studied in either our validation or case
study (which utilize thousands of methods). Hogarth operates
without the need for a complete system model by inferring
inter-callback connections based on observed registrations.

Several systems use dataflow analyses to identify triggering
conditions in apps. DroidSIFT [13] builds data-dependency
graphs using a context-sensitive, flow-sensitive, interproce-
dural dataflow analysis to identify either user interactions
or system events for sensitive resource use. Similarly, App-
Context [9] identifies interprocedural control-flow paths from
program entry points to potentially malicious behaviors. Then
AppContext performs a dataflow analysis to identify the con-
ditions that may trigger malicious behaviors.

Other systems apply symbolic execution to identify triggers
in apps. AppIntent [6] first uses dataflow analysis to identify
program paths that may leak private information, and then
employs directed symbolic execution on those paths to find
inputs that could trigger a leak. As the full Android system is
too complicated to effectively apply symbolic execution in a
scalable manner, the authors use a system model to assist the
analysis. TriggerScope [10] uses a combination of static anal-
ysis and symbolic execution to identify particularly complex
trigger conditions associated with potentially malicious code.
The tool attempts to detect “logic bombs” by identifying path
conditions that are abnormally complex when simplified.

Hogarth has three key differences with these four systems.
First, because we rely on a minimal model of the system, our
approach is more resilient to the changes in Android from
version to version. Second, because we use dynamic traces to
drive further analysis of the application, we achieve a more
precise result because all events observed in our dynamic
traces are possible. However, because Hogarth depends on a
representative corpus of dynamic traces, we cannot guarantee
that all permission uses will be exercised. We see Hogarth as
complementary to these systems, in that it achieves greater
precision and scalability at the cost of completeness.

FuzzDroid [14] uses a mutation fuzzer to drive execution
of an app toward a specific target location. IntelliDroid [15]
uses static analysis to identify an overapproximation of inputs
that could trigger malicious activity and then dynamically ex-
ecutes them to prune false positives. Similarly, SmartDroid [7]
determines interprocedural control-flow paths from app entry
points to possibly malicious activity. SmartDroid then executes
the app on a modified version of Android, attempting all
possible interactions to determine the set of triggers necessary
to progress from the entry point to the potentially malicious
behavior. These approaches identify a single path that reaches
a target, whereas Hogarth identifies the set of conditions that
could lead to sensitive resource use.

Lastly, AppTracer [16] uses dynamic analysis to discover
what user interactions temporally precede sensitive resource
uses. Instead of temporal heuristics, Hogarth uses symbolic
path tracing to infer much richer contextual information about
sensitive resource uses and identify interactive triggers App-
Tracer misses. (This comparison is detailed in Section V-C.)

Taint and Flow Analysis for Android: TaintDroid [32]
modifies the Android firmware to perform system-wide dy-
namic taint-tracking and notifies the user whenever sensitive
data is leaked. Phosphor [33] provides similar taint-tracking,
but instead modifies the JVM to improve portability. Flow-
Droid [5] uses static dataflow analysis find sensitive data leaks.
User-centric dependence analysis [34] uses a dataflow de-
pendence analysis to characterize “normal” data consumption
behaviors along paths from user inputs to sensitive resource
uses. These tools all focus on data flow, which is orthogonal
to the control-flow dependencies that Hogarth discovers.

Concolic Execution: One style of symbolic execution is
concolic execution [21], [35], [36], in which programs are
instrumented to track symbolic expressions at run-time along
with their concrete counterparts in the actual run. Hogarth is
similar in spirit in that it performs symbolic execution on a
path corresponding to a program execution. However, rather
than using the result to branch and explore further executions,
Hogarth presents path conditions as output in trigger diagrams.
Moreover, rather than concretize at system calls, Hogarth
introduces symbolic variables to represent those calls and then
finds path conditions in terms of those variables.

Dynamic Slicing: Dynamic slicing [37], [38] is a related
approach that has also been used to investigate contextual
security in Android apps [39]. A static program slice is
the minimal set of program expressions that may affect a
given program value. A dynamic slice is a minimal subset
of the program that actually does affect the target value for a
provided input. Dynamic slicing considers a specific execution
trace and effectively eliminates all code in the static slice that
is unrelated to the target for the trace. Our approach is related
as it reasons about dependencies that were observed to cause
a permission use. However, Hogarth infers symbolic path
conditions and coarser control-flow information—a callback
sequence—rather than a more precise dynamic slice.

10

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced Hogarth, a new tool to create
trigger diagrams that explain the cause of permission uses in
Android apps. Hogarth works by using two novel techniques.
The first is symbolic path tracing, which performs symbolic
execution along a dynamically-generated program trace. The
second is path splicing, which splices together callbacks with
the callbacks in which they are registered. This allows Hogarth
to work without a detailed model of the Android framework.
Our implementation performs demand-driven path splicing,
which enabled it to scale to 12 top applications from Google
Play, generally taking only minutes to explore apps that
generated logs comprising millions of lines.

We believe that Hogarth provides a promising proof of
concept, and we think the approach has the potential to be
of significant aid in debugging, reverse engineering, and other
auditing purposes.

ACKNOWLEDGMENTS

We thank Seth Rabin and the anonymous reviewers for
their helpful feedback. This research was supported in part
by a UMIACS contract under the partnership between the
University of Maryland and DoD, and by a Google Research
Award.

REFERENCES

[1] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen,
““little brothers watching you”: Raising awareness of data leaks on
smartphones,” in Proceedings of the 9th Symposium on Usable Privacy
and Security, ser. SOUPS ’13. New York, NY, USA: ACM, 2013, pp.
12:1–12:11. [Online]. Available: http://doi.acm.org/10.1145/2501604.
2501616

[2] I. Liccardi, J. Pato, D. J. Weitzner, H. Abelson, and D. De Roure,
“No technical understanding required: Helping users make informed
choices about access to their personal data,” in Proceedings of the
11th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, ser. MOBIQUITOUS ’14.
Brussels, Belgium, Belgium: ICST, 2014, pp. 140–150. [Online].
Available: http://dx.doi.org/10.4108/icst.mobiquitous.2014.258066

[3] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthorsson,
“Leakiness and creepiness in app space: Perceptions of privacy and
mobile app use,” in Proceedings of the 32nd ACM Conference
on Human Factors in Computing Systems, ser. CHI ’14. New
York, NY, USA: ACM, 2014, pp. 2347–2356. [Online]. Available:
http://doi.acm.org/10.1145/2556288.2557421

[4] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King,
“When it’s better to ask forgiveness than get permission: Attribution
mechanisms for smartphone resources,” in Proceedings of the 9th
Symposium on Usable Privacy and Security, ser. SOUPS ’13. New
York, NY, USA: ACM, 2013, pp. 1:1–1:14. [Online]. Available:
http://doi.acm.org/10.1145/2501604.2501605

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in Proceedings of the 35th ACM Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[6] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 20th ACM conference
on Computer & communications security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 1043–1054. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516676

[7] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: An automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the 2nd ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices,
ser. SPSM ’12. New York, NY, USA: ACM, 2012, pp. 93–104.
[Online]. Available: http://doi.acm.org/10.1145/2381934.2381950

[8] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow
analysis of user-driven callbacks in android applications,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 89–99.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818768

[9] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in Proceedings of the 37th IEEE International Conference on
Software Engineering, ser. ICSE ’15, vol. 1. Florence, Italy: ACM,
May 2015, pp. 303–313.

[10] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy, ser. IEEE S&P ’16. San Jose, CA: IEEE Press, May
2016, pp. 377–396.

[11] S. Blackshear, B.-Y. E. Chang, and M. Sridharan, “Selective
control-flow abstraction via jumping,” in Proceedings of the 30th
ACM International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’15. New
York, NY, USA: ACM, 2015, pp. 163–182. [Online]. Available:
http://doi.acm.org/10.1145/2814270.2814293

[12] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, and D. X. Song, “Contextual policy
enforcement in android applications with permission event graphs,”
in Proceedings of the 20th Network and Distributed System Security
Symposium, ser. NDSS ’13. San Diego, CA: Internet Society, 2013, p.
234.

[13] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android
malware classification using weighted contextual api dependency
graphs,” in Proceedings of the 21st ACM Conference on Computer
and Communications Security, ser. CCS ’14. New York, NY,
USA: ACM, 2014, pp. 1105–1116. [Online]. Available: http:
//doi.acm.org/10.1145/2660267.2660359

[14] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave
maliciously: Targeted fuzzing of android execution environments,” in
Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE ’17. Buenos Aires, Argentina: ACM, 2017, pp.
300–311.

[15] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware,” in Proceedings of the 23rd
Network and Distributed System Security Symposium, ser. NDSS ’16.
San Diego, CA: Internet Society, 2016.

[16] K. Micinski, D. Votipka, R. Stevens, N. Kofinas, M. L. Mazurek,
and J. S. Foster, “User interactions and permission use on android,”
in Proceedings of the 35th ACM Conference on Human Factors in
Computing Systems, ser. CHI ’17. Denver, Colorado, USA: ACM,
2017, pp. 362–373. [Online]. Available: http://doi.acm.org/10.1145/
3025453.3025706

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. android and mr. hide: fine-grained permissions in
android applications,” in Proceedings of the 2nd ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12. Raleigh, NC, USA: ACM, 2012, pp. 3–14.

[18] J. Jeon, K. K. Micinski, and J. S. Foster, “Symbolic execution for dalvik
bytecode,” University of Maryland, 2012, (Tech Report, CS-TR-5022).

[19] F.-D. Limited, “F-droid - free and open source android repository,”
F-Droid Limited, 2017, (Accessed 4-11-2017). [Online]. Available:
https://f-droid.org/

[20] M. Parkour, “Contagio mobile,” Mila Parkour, 2017, (Accessed 4-11-
2017). [Online]. Available: http://contagiominidump.blogspot.com/

[21] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in Proceedings of the
13th ACM Conference on Computer and Communications Security, ser.
CCS ’06. New York, NY, USA: ACM, 2006, pp. 322–335. [Online].
Available: http://dx.doi.org/10.1145/1180405.1180445

[22] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating

11

http://doi.acm.org/10.1145/2501604.2501616
http://doi.acm.org/10.1145/2501604.2501616
http://dx.doi.org/10.4108/icst.mobiquitous.2014.258066
http://doi.acm.org/10.1145/2556288.2557421
http://doi.acm.org/10.1145/2501604.2501605
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2381934.2381950
http://dl.acm.org/citation.cfm?id=2818754.2818768
http://doi.acm.org/10.1145/2814270.2814293
http://doi.acm.org/10.1145/2660267.2660359
http://doi.acm.org/10.1145/2660267.2660359
http://doi.acm.org/10.1145/3025453.3025706
http://doi.acm.org/10.1145/3025453.3025706
https://f-droid.org/
http://contagiominidump.blogspot.com/
http://dx.doi.org/10.1145/1180405.1180445

Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855756

[23] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control
flow transitions through the android framework,” in Proceedings of the
22nd Network and Distributed System Security Symposium, ser. NDSS
’15. San Diego, CA: Internet Society, 2015. [Online]. Available:
http://www.internetsociety.org/doc/edgeminer-automatically-detecting\
-implicit-control-flow-transitions\-through\-android-framework

[24] P. Software, “Jeb decompiler,” PNF Software, 2017, (Accessed
5-19-2017). [Online]. Available: www.pnfsoftware.com

[25] Axet, “Misbothering sms receiver,” 2015, (Accessed 4-11-
2017). [Online]. Available: https://f-droid.org/packages/com.github.
axet.callrecorder/

[26] A. Yalon, “Misbothering sms receiver,” 2015, (Accessed 8-25-2017).
[Online]. Available: https://f-droid.org/repository/browse/?fdfilter=
Misbothering+SMS+Receiver&fdid=net.yxejamir.misbotheringsms

[27] R. Treffer, “Contact merger,” 2014, (Accessed 4-11-2017). [Online].
Available: https://f-droid.org/repository/browse/?fdfilter=contacts&fdid=
de.measite.contactmerger

[28] L. Stefanko, “Android trojan spy goes 2 year undetected,” 2015,
(Accessed 4-11-2017). [Online]. Available: http://b0n1.blogspot.com/
2015/04/android-trojan-spy-goes-2-years.html?spref=tw

[29] Google, inc. (2017) Camera2basic android sample app. [Online].
Available: https://github.com/googlesamples/android-Camera2Basic

[30] M. Rogers, “Dendroid malware can take over your camera, record audio,
and sneak into google play,” Lookout Inc, 2014, (Accessed 4-11-2017).
[Online]. Available: https://blog.lookout.com/blog/2014/03/06/dendroid/

[31] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[32] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 393–407. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1924943.1924971

[33] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow
in commodity jvms,” in Proceedings of the 29th ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’14. New York, NY, USA: ACM, 2014,
pp. 83–101. [Online]. Available: http://doi.acm.org/10.1145/2660193.
2660212

[34] K. O. Elish, D. Yao, and B. G. Ryder, “User-centric dependence
analysis for identifying malicious mobile apps,” in Proceedings of the
1st Workshop on Mobile Security Technologies, ser. MoST ’12. San
Jose, CA: IEEE Press, 2012.

[35] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 28th ACM Conference on
Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[36] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-
13. New York, NY, USA: ACM, 2005, pp. 263–272. [Online].
Available: http://doi.acm.org/10.1145/1081706.1081750

[37] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. Piscataway,
NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

[38] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in
Proceedings of the 12th ACM Conference on Programming Language
Design and Implementation, ser. PLDI ’90. New York, NY, USA:
ACM, 1990, pp. 246–256. [Online]. Available: http://doi.acm.org/10.
1145/93542.93576

[39] Y. Chen, W. You, Y. Lee, K. Chen, X. Wang, and W. Zou, “Mass dis-
covery of android traffic imprints through instantiated partial execution,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. New York, NY, USA: ACM, 2017, pp. 815–
828.

12

http://portal.acm.org/citation.cfm?id=1855756
http://www.internetsociety.org/doc/edgeminer-automatically-detecting\-implicit-control-flow-transitions\-through\-android-framework
http://www.internetsociety.org/doc/edgeminer-automatically-detecting\-implicit-control-flow-transitions\-through\-android-framework
www.pnfsoftware.com
https://f-droid.org/packages/com.github.axet.callrecorder/
https://f-droid.org/packages/com.github.axet.callrecorder/
https://f-droid.org/repository/browse/?fdfilter=Misbothering+SMS+Receiver&fdid=net.yxejamir.misbotheringsms
https://f-droid.org/repository/browse/?fdfilter=Misbothering+SMS+Receiver&fdid=net.yxejamir.misbotheringsms
https://f-droid.org/repository/browse/?fdfilter=contacts&fdid=de.measite.contactmerger
https://f-droid.org/repository/browse/?fdfilter=contacts&fdid=de.measite.contactmerger
http://b0n1.blogspot.com/2015/04/android-trojan-spy-goes-2-years.html?spref=tw
http://b0n1.blogspot.com/2015/04/android-trojan-spy-goes-2-years.html?spref=tw
https://github.com/googlesamples/android-Camera2Basic
https://blog.lookout.com/blog/2014/03/06/dendroid/
http://doi.acm.org/10.1145/2382196.2382222
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://doi.acm.org/10.1145/2660193.2660212
http://doi.acm.org/10.1145/2660193.2660212
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1081706.1081750
http://dl.acm.org/citation.cfm?id=800078.802557
http://doi.acm.org/10.1145/93542.93576
http://doi.acm.org/10.1145/93542.93576

	Introduction
	Overview
	Trigger Diagram Inference
	Trace Generation
	Symbolic Path Tracing
	Path Splicing

	Implementation
	Evaluation
	Validation Study
	Case Study
	Results
	Limitations and Threats to Validity

	Related Work
	Conclusion and Future Work
	References

