
Enhancing Symbolic Execution by Machine
Learning Based Solver Selection

Sheng-Han Wen∗, Wei-Loon Mow∗, Wei-Ning Chen∗, Chien-Yuan Wang∗ and Hsu-Chun Hsiao∗†
∗Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

†Research Center for IT Innovation, Academia Sinica, Taiwan
{r05922009, b03902110, b01902093, b04902084, hchsiao}@csie.ntu.edu.tw

Abstract—Constraint solving creates a serious performance
bottleneck in symbolic execution. Examining a plethora of SMT
solvers with diverse capabilities, we address the following research
questions: How can the performance of symbolic execution
improve if it can pick a priori the best solver for a given path
constraint? How can such a prediction oracle be practically
implemented? In this work, we first define the solver selection
problem in symbolic execution and its evaluation metrics, and
perform a preliminary study to gauge potential performance
improvement through solver selection. We then present the
design and implementation of Path Constraint Classifier (PCC), a
machine learning based meta-solver that aims to reduce overall
constraint solving latency by dynamically selecting a solver
per query. Using machine learning seems straightforward, yet
surprisingly underexplored; one main technical challenge is how
to avoid excessive overhead introduced by feature extraction.
We address this challenge by taking advantage of the structural
characteristics of symbolic execution. Our experiments confirm
that the overall solver time can be reduced by 10.3% in the
KLEE dataset and 46% in the benchmark dataset, while the
solver prediction procedure only accounts for 2% to 10% of
overall solving time.

I. INTRODUCTION

Symbolic execution is an automated program analysis
technique for software testing and vulnerability discovery.
Symbolic execution systematically explores possible program
execution paths, represents each path as a set of constraints,
and sends the constraints to a solver for satisfiability checks
and input generation.

Despite being a key enabler of symbolic execution, con-
straint solving is a computationally intractable problem in the-
ory and remains a serious performance bottleneck in practice.
Palikareva and Cadar [27] showed that solvers can use up to
99% of total time in symbolic execution. The performance
may further deteriorate when advanced symbolic execution
techniques, such as state merging, increase the constraint
complexity. Kuznetsov et al. [21] showed that merging multiple
states may end up increasing the overall solving time as the
size of the symbolic path constraints increases.

Because state-of-the-art SMT solvers address intractability
via various optimizations, they have different capabilities and
solving times. No existing solver can consistently outperform
the others, as shown in our preliminary study in Section III-A.

To take advantage of multiple solvers with diverse capabilities,
several symbolic execution engines support multiple solvers
in parallel. For example, KLEE [10] and JDART [25] embed
the pySMT framework [15] and the JConstraints interface,
respectively, as a unified interface for solvers. In addition,
because solver selection is a type of algorithm selection prob-
lem, several portfolio-solving techniques have been applied to
select solvers [19], [34]. However, because the time spent on
constraint processing and prediction was not included in their
evaluation, it remains unclear how effective these solutions are
when applied to improve the overall performance of symbolic
execution.

In this work, we define the solver selection problem in
symbolic execution: Given a set of solvers and a sequence of
path constraints generated by a symbolic execution engine,
we would like to have a prediction oracle that selects a
solver for each path constraint, such that the overall solving
and prediction time is minimized. An interesting difference
between the generic solver selection problem and the one
in symbolic execution is the path constraints collected by
the symbolic execution engine have high similarity with each
other. This is because when the symbolic execution engine
explores to a certain state with path constraint {c1, c2, ..., cn},
the engine can choose to explore the next state with constraint
cn+1 or its negation c′n+1. Choosing either will share a set of
similar constraints except the last one.

To approximate this optimization problem, we propose
Path Constraint Classifier (PCC), a system that automatically
selects a solver by utilizing machine learning techniques. PCC
predicts which solver can perform well when receiving a path
constraint. The use of machine learning seems straightforward,
yet is surprisingly underexplored, with one main technical
challenge being how to avoid excessive overhead introduced
by machine learning. We address this challenge by taking
advantage of the domain knowledge of symbolic execution.
Specifically, to accelerate feature extraction, we identify a set
of features that can be quickly extracted from path constraints
collected during symbolic execution, and propose using a
Constraint Feature Cache Table (CFCT) to drastically reduce
the feature extraction time by leveraging the structural charac-
teristics of symbolic execution.

Overall, when taking the extra solver prediction and feature
extraction overhead into consideration, our system performs
better than individual SMT solvers in the KLEE and bench-
mark datasets: Our system achieves 1.12x and 1.85x speedup
in the KLEE and benchmark datasets, respectively, and has the
highest solve rate in these two datasets. Particularly, thanks to
CFCT, the feature extraction procedure speeds up 28x to 788x

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23080
www.ndss-symposium.org

in the SE dataset and 11x in the benchmark dataset.

Because PCC can be considered as a meta-solver, it can be
integrated with other optimization techniques (e.g., constraint
simplification, query reduction, and improved solvers) to fur-
ther improve the scalability of constraint solving in symbolic
execution.

The contributions of this paper are listed below:

• We compare the performance of different solvers over three
constraint datasets and show the amount of time reduction
one might gain by employing solver selection.

• We define the solver selection problem in symbolic execu-
tion and identify the fundamental distinctions between it and
the generic solver selection problem.

• We design and implement a system called Path Con-
straint Classifier based on machine learning techniques, with
domain-specific optimizations to accelerate the extraction of
path constraint features.

• We discuss several future directions to further improve PCC,
including the use of backup solvers, logic selection, delayed
solving, and dynamic timeout.

The source code of PCC is available on GitHub1.

II. BACKGROUND AND RELATED WORK

Symbolic execution is a well-known software testing tech-
nique. Given a program, a symbolic execution engine systemat-
ically explores it and generates path constraints that represent
program states using symbolic variables. During exploration,
the symbolic execution engine heavily relies on Satisfiability
Modulo Theories (SMT) solvers, such as Z3, for two important
tasks: (1) checking the satisfiability of a path constraint; (2)
obtaining concrete input values that can be used to reach the
corresponding state of a path constraint.

Able to generate concrete inputs for software crashes,
symbolic execution is an effective method of software testing
and has been applied to small-scale industry applications and
for academic usage recently. However, when it comes to large-
scale applications, many scalability issues arise, limiting the
practicability of symbolic execution. One of the performance
bottlenecks is constraint solving. An experiment [27] about
the time spent on constraint solving shows that the constraint
solving time without any optimization could account for up to
99% of the total time of symbolic execution.

Several methods have been proposed to speed up con-
straint solving by reducing the number of constraints [10],
[17], reusing proofs [1], [2], [10], [20], [32], simplifying
complex constraints (e.g., nonlinear constraints) [16], [29], or
searching for approximate solutions to complex constraints [7],
[13], [22], [31]. In addition, specialized constraint solvers
are proposed to better support specific operations or library
functions. For example, Z3-str [35] treats strings as a primitive
type to efficiently solve strings-related theories. CORAL [31]
utilizes meta-heuristic search algorithms to support theories
with transcendential functions such as trigonometric and log-
arithmic functions. Our solution can be integrated with these
optimization techniques to further improve the scalability of
constraint solving in symbolic execution.

1https://github.com/csienslab-PCC/PathConstraintClassifier

As solvers have diverse capabilities, several proposals
explore the idea of querying different solvers for different types
of constraints. KLEE [10] supports a multi-solver framework
using pySMT. However, querying all the supported solvers
in parallel is resource-consuming. Hence, our work aims to
predict the best solver for a given path constraint and only
queries this solver for improved performance. Pasareanu et
al. [28] split a path constraint into simple and complex parts.
The solutions of the simple part will be reused to help simplify
the complex one. This technique has been improved by Hybrid-
KLEE [23], which proposes to divide a path constraint into
linear and nonlinear parts. The solutions of the linear parts
will be treated as initial seeds of a local search algorithm
to solve the complex parts. Instead of having pre-defined
classifications, our work proposes an automated constraint
classification procedure based on machine learning.

SATzilla [34] considers SAT solver selection as an algo-
rithm selection problem and adopts existing portfolio-solving
techniques. Healy et al. [19] apply similar techniques to
the SMT solving domain. Our work focuses on how to
apply portfolio-solving in the symbolic execution domain,
and proposes domain-specific optimizations to accelerate the
extraction of path constraint features.

III. SOLVER SELECTION PROBLEM IN SYMBOLIC
EXECUTION

A. Preliminary Study

We first conduct an experiment to show that no solver can
consistently outperform the others and simple classification
based on constraint logic is insufficient. This motivates the
development of a more sophisticated solver selection method
in symbolic execution.

a) Data: We use the SMT-LIB standard [5], [6] as a
common format to express constraints. SMT-LIB is well doc-
umented and is compatible with most of the current symbolic
execution engines and SMT solvers. We obtain constraints
with various logic types from the SMT-COMP benchmark [3].
A logic in SMT-LIB can be viewed as a depiction of the
expression language, including the theory (e.g., linear or non-
linear arithmetic), the primitive types (e.g.., integers, reals or
bitvector) and corresponding operations, and also the limi-
tations between the conjunction of primitives. We also use
constraint data collected by running two symbolic execution
engines, KLEE and angr (the SE dataset). See Section V-A for
details.

b) Solvers: We choose five popular SMT solvers from
SMT-COMP, which are Z3 [12], MathSAT [11], CVC4 [4],
Yices [14], and Boolector [8]. For each constraint, we query
each of the five solvers and identify the best solver that uses
the least solving time.

c) Results: TABLE I and TABLE II show that even
though Boolector seems to be the best solver for the SE
dataset, Yices requires the least solving time to solve all the
data. We can conclude that Boolector might struggle to
solve particular constraints, which increases the total solving
time. On the other hand, though Yices is the fastest solver
for 5%-37% of constraints, it is stable (i.e., few timeouts and
errors) and uses the least total solving time.

2

SE dataset Yices CVC4 Z3 Boolector MathSAT

angr 8.56% 0.00% 0.31% 56.37% 34.76%
KLEE 36.77% 0.00% 0.00% 62.48% 0.75%

TABLE I: The ratio of being the best solver in the SE dataset

SE dataset Yices CVC4 Z3 Boolector MathSAT

angr 227s 1304s 1721s 579s 337s
KLEE 338s 2888s 1092s 477s 813s

TABLE II: Total time to solve all path constraints in the SE
dataset

TABLE III shows the ratio of the best solvers and the
breakdowns based on logic type of the SMT-COMP benchmark
dataset. The result confirms that no solver can consistently
outperform the others and simple classification based on
constraint logic is insufficient. Thus, it is possible to improve
overall performance via careful solver selection. In addition,
while logic type is an important factor affecting solvers’
performance, there is still no clear winner in the logic types
commonly seen in symbolic execution (e.g., QF ABV) [9].
Hence, instead of relying on a single solver, we are motivated
to combine the strength of multiple solvers.

B. Problem Definition

We now define the solver selection problem in symbolic
execution. Compared to the generic solver selection problem,
this formulation takes into account the time overhead of the
selection procedure and the sequence of path constraints is
generated by a symbolic execution engine.

Solver Selection Problem in Symbolic Execution. Given
a sequence of M path constraints PC = {pc1, pc2, ..., pcM}
and a set of N constraint solvers S = {s1, s2, ..., sN}, we
formulate the solver selection problem in symbolic execution
as finding si ∈ S such that T (S, PC), which is the total
solving time including solver selection time and solver solving
time, is minimized.

T (S, PC) =

M∑
i=1

(Tsolve(si, pci) + Tdetermine(pci)) (1)

where Tsolve stands for the time spent on solving path
constraint pc using solver s, and Tdetermine stands for the
time spent on determining the best SMT solver for a given
path constraint.

Note that this formulation does not include one-time costs
such as initialization or training time in ML.

IV. PCC DESIGN AND IMPLEMENTATION

To address the solver selection problem in symbolic execu-
tion, we propose a new symbolic execution component: Path
Constraint Classifier (PCC). PCC leverages machine learning
techniques to predict the performance of each solver when

Theory Logic Yices CVC4 Z3 Boolector MathSAT

ALIA 0.00% 0.00% 100.00% 0.00% 0.00%
AUFLIRA 0.00% 0.00% 100.00% 0.00% 0.00%
AUFNIRA 0.00% 9.71% 90.29% 0.00% 0.00%
BV 21.43% 71.43% 7.14% 0.00% 0.00%
LIA 100.00% 0.00% 0.00% 0.00% 0.00%
LRA 42.11% 14.04% 43.86% 0.00% 0.00%
NIA 0.00% 0.00% 100.00% 0.00% 0.00%
NRA 0.00% 1.11% 98.89% 0.00% 0.00%
QF ABV 22.72% 0.95% 10.57% 43.73% 22.03%
QF ALIA 40.00% 0.00% 20.00% 0.00% 40.00%
QF AUFBV 33.33% 0.00% 0.00% 33.33% 33.33%
QF AUFLIA 47.66% 19.63% 19.63% 0.00% 13.08%
QF AX 100.00% 0.00% 0.00% 0.00% 0.00%
QF BV 44.83% 3.45% 31.03% 13.79% 6.90%
QF IDL 89.29% 0.00% 3.57% 0.00% 7.14%
QF LIA 66.67% 1.26% 14.38% 0.00% 17.69%
QF LRA 52.76% 0.00% 4.91% 0.00% 42.33%
QF NIA 88.32% 0.99% 10.50% 0.00% 0.20%
QF NRA 47.73% 6.38% 45.89% 0.00% 0.00%
QF RDL 92.59% 0.00% 7.41% 0.00% 0.00%
QF UF 99.86% 0.14% 0.00% 0.00% 0.00%
QF UFBV 33.33% 0.00% 33.33% 33.33% 0.00%
QF UFIDL 67.86% 0.00% 28.57% 0.00% 3.57%
QF UFLIA 71.19% 0.00% 20.34% 0.00% 8.47%
QF UFLRA 76.03% 0.00% 12.40% 0.00% 11.57%
QF UFNRA 42.86% 0.00% 57.14% 0.00% 0.00%
UF 0.00% 100.00% 0.00% 0.00% 0.00%
UFBV 0.00% 0.00% 100.00% 0.00% 0.00%
UFIDL 0.00% 33.33% 66.67% 0.00% 0.00%
UFLIA 0.00% 39.17% 60.83% 0.00% 0.00%
UFLRA 0.00% 100.00% 0.00% 0.00% 0.00%

Overall 31.82% 8.53% 37.43% 6.46% 5.31%

TABLE III: The best solver count percentage in different
theory logic

solving a given path constraint, and selects the solver with the
best predicted performance.

We implement PCC with an embedded solver interaction
interface so that the selected solver can be queried directly
according to the classification result. Therefore, one can also
view PCC as a special kind of SMT solver that can be flexibly
integrated with other symbolic execution engines.

Figure 1 presents an overview of PCC’s internal architec-
ture and a flowchart of how a path constraint is classified to a
solver. PCC is composed of three major components: Feature
Extractor, Classification Module and Solver Interaction Inter-
face. We also propose a special component called Constraint
Feature Cache Table in Feature Extractor to further improve
the performance of PCC. The main classification workflow is
as follows:

• Feature Extractor: Given a new incoming path constraint,
the Feature Extractor will generate features for the path
constraint in cooperation with Constraint Feature Cache
Table, which stores all the generated features in a table in
order to speed up the generation of identical features, and
pass the features to Classification Module.
• Classification Module: The classification module will per-

form a classification algorithm to determine the most suit-
able solver for a given path constraint, and then query the
chosen solver through the Solver Interaction Interface.

3

Fig. 1: The architecture of Path Constraint Classifier

• Solver Interaction Interface: When the chosen solver
finishes its task, the interaction interface will help transfer
and output the result to the upper layer component.

In the following subsection, we describe the design and im-
plementation of Path Constraint Classifier in details, including
the features, extraction method and optimization, and finally,
the classification algorithm.

A. Feature Extraction

Recall that in order to evaluate the performance of different
SMT solvers, we use the SMT-LIB standard as a common
expression of a path constraint. Therefore, to extract the
features of a given path constraint, we first express it in
the SMT-LIB form. This conversion is supported by most
symbolic execution engines. Next, the path constraint is parsed
into a syntax tree, with every internal node representing an
operator and every leaf representing an operand (i.e., symbol
or constant). An example of a syntax tree is shown in Figure 2.

B. Feature Selection

To capture the characteristics of a path constraint, we
select 119 features for solver prediction. These features can
be roughly classified into four categories:

• Syntax Node Statistics Features are the statistics of syntax
node properties, including the appearance of arithmetic
operators such as add, minus, multiply and divide; bitvector
operators such as bv-add, bv-minus, bv-and and bv-or;
quantifiers forall and exists. There are about 62 features in
this category.

• Tree Structure Features contain the structure properties of
a tree, including the depth of a tree, the number of leaves
and nodes.

• Variable Features are the features related to variables, such
as the number of variables and unique variables, and also
the number of variable clauses such as AND and OR.

• Logic Features is a 50-dimension vector composed of only
Boolean values, which indicates the types of logic the path
constraint belongs to.

The majority of the chosen features are related to con-
straint size, as a larger constraint tends to cause higher burden

Fig. 2: Syntax tree for constraint: (assert (or (= X6 (+ S0
S1)) (= X6 (+ (* 15 S0) S1)) (= X6 (- S0 S1)))

on a solver. In addition, these features can be easily extracted,
reducing overhead imposed on the solver selection procedure.
An example of an easily extracted feature is the depth feature,
as all we have to do is traverse all the syntax sub-trees and
find the one with the biggest depth value, where the time
complexity is O(#ofsubtrees).

C. Constraint Feature Cache Table

In symbolic execution, every path constraint of a state and
its child states share a large proportion of identical constraints.
More precisely, the only difference will be the last constraint
of its child state. Due to this, we are likely to waste excessive
time extracting the same features and thus slow down the
performance of symbolic execution.

To accelerate the feature extraction procedure, we design a
special component called Constraint Feature Cache Table
(CFCT). The idea is based on hash-consing [18]. Before
extracting features from a syntax tree, we first query whether
the features of a given syntax tree have already been stored in
CFCT. If so, we directly take the stored features. Otherwise,
we extract the required properties from its root and apply the
same procedure to all the syntax sub-trees, then store it in
CFCT for future use. To show the performance of CFCT, we
conduct an experiment to compare extraction times with and
without the usage of CFCT, as shown in Section V-B.

D. Classification Model

We use Deep Neural Network (DNN) with nine dense
layers as our classification model, which is a lightweight
machine learning model whose classification procedure takes
negligible time. Given the features of a path constraint, the
model will predict the probability for every SMT solver being
the most suitable solver to solve it. This probability indicates
which solver is least likely to result in losses among all the
other solvers. For example, if the probability of the z3 solver
is 1.0, then z3 will result in the least amount of loss when
solving a given path constraint. The loss function can be
flexibly defined depending on the optimization objective.

We design two versions of DNN model with different loss
functions and heuristics in mind.

• DNN-Alpha: In the first version of the model, our heuristic
is very simple: if we can accurately predict the fastest solver,
then the total solving time could be minimized. Hence, in
this model, we only use the fastest solver as the answer to

4

each problem and train the model with categorical cross
entropy loss.

• DNN-Beta: In the second version of the model, we try to
take solvability and solver performance into consideration.
After all, in symbolic execution, choosing a solver that fails
to solve a path constraint is worse than choosing a slow one
that successfully solves it. Hence, we give penalty to those
that fail to solve due to timeout or error, and assign a loss
value based on the time of a successful solve:

Loss(Solver) =

A ∗Norm(TSolver), if solved
B, if timeout

C, if error

Norm(T) =
T − Tmin

Tmax − Tmin

Norm(.) is a function that normalizes the solving time
TSolver of Solver according to Tmax and Tmin, which
are the maximal and minimal values of the solving time
collected from all the solvers that successfully solve this
problem. A, B and C are adjustable parameters to evaluate
the outcome of a solving procedure, which can be deter-
mined by one’s preference for each solving outcome. For
example, suppose our preference order for solving outcomes
are {Successfully Solve} > {Timeout} > {Error}, which
means “it is better for a solver to Successfully Solves a
problem than to Timeout”. Therefore, according to our
preference, a possible assignment for A, B and C could
be 50, 100 and 200.

V. EVALUATION

A. Data Collection

We use two datasets for experiments: SE and benchmark.
The SE dataset is collected from two symbolic execution
engines: angr [30] and KLEE [10]. Specifically, we per-
form symbolic execution on eight target binaries from GNU
Coreutils 8.29 and dump all the path constraint queries
into a .smt2 file. To increase diversity, we also collect
the benchmark dataset from SMT-COMP [3], which contains
constraints of several different logics type stored in the .smt2
file format.

The benchmark dataset and the SE dataset contain 8, 199
and 59, 073 files, respectively. The SE dataset contains 39, 776
files generated by KLEE and 19, 297 files generated by angr.

B. Constraint Feature Cache

To evaluate the effectiveness of using the constraint feature
cache table, we compare the extraction times between PCC
with and without the usage of CFCT.

For each extraction procedure, we set the time limit to 20
seconds and record the time spent on extraction as well as
the number of extracted syntax nodes. The result is shown in
Figure 3 (more details in Table IV). The result in the RANDOM
column is an average of 10 iterations of 500 randomly sampled
.smt2 files from the benchmark dataset.

In this experiment, we use the SE dataset collected from
KLEE. According to the experiment results, using CFCT

expr dd printf dircolors echo od mknod pathchk
0

200

400

600

Binary

E
xt

ra
ct

io
n

Ti
m

e

w/o w/

Fig. 3: Feature extraction time of different binaries with or
without Feature Cache

greatly speeds up the extraction procedure for both types of
data. Additionally, the SE dataset enjoys a higher speedup
ratio because the SE dataset contains a higher percentage of
duplicate constraints than the benchmark dataset.

The speedup factor for binary pathchk (i.e., 788x) is
much higher than other binaries. A possible explanation for
this could be that some of the path constraints in pathchk
contain a huge number of constraints, but most are identical.
Consequently, a large amount of time can be saved by using
CFCT, demonstrating yet again that CFCT can effectively
improve the efficiency of feature extraction.

For the benchmark dataset, where all data have relatively
low dependency compared to the SE dataset, the usage of
CFCT results in 11x speedup. This shows that CFCT can
greatly speed up the feature extraction procedure for all kinds
of datasets.

C. Solving Performance

Training Data Generation. We use five SMT solvers to
solve all the constraints with a given timeout (100 seconds
in the current experiment) and record the corresponding out-
come, including the solving time, accuracy of the answer,
and whether an error or timeout event occurs. As for model
training, we split our data into training and testing datasets as
follows:

• Benchmark dataset: We randomly choose 60% of them
to be our training dataset, and the remainder is our testing
dataset.
• SE dataset: We divide the binaries into two groups, one for

generating training data and the other reserved for testing.

The reason for splitting the SE dataset in this manner is
to reduce the chance of information leaks during the training
phase. Since a path constraint could share a large proportion of
identical constraints with another path constraint in the same
binary, randomly splitting the SE dataset could mean that the
training dataset contains knowledge about the testing dataset,
thus making prediction results unreliable.

Experiment Settings. We train our models and compare
the prediction results of them directly using an SMT solver.
Five solvers are evaluated: cvc4, z3, msat, btor, and yices.
In addition, the best solver represents the ideal selection that
always correctly predicts the fastest solver, with zero prediction
overhead, for solving a given path constraint.

5

Target Binary expr dd printf dircolors echo od mknod pathchk RANDOM

Num. of SMT files 3881 1013 122 135 433 1512 5226 703 500
Total syntax nodes 1.1× 106 902361 47178 131403 149765 823947 6.5× 106 2.4× 1039 4.2× 1062

Without Feature Cache

Extracted nodes 1.1× 106 902361 47178 131403 149765 823947 6.5× 106 2.5× 107 1.2× 106

Extraction time (s) 96.04 73.41 3.79 10.68 12.06 67.84 528.55 419.83 999.83
Timeout 0 0 0 0 0 0 0 20 43

With Feature Cache

Extracted nodes 10104 5119 447 3479 724 5549 34438 5592 6.5× 105

Extraction time (s) 1.11 0.90 0.04 0.37 0.07 0.64 4.40 0.53 93.32
Timeout 0 0 0 0 0 0 0 0 0.6
Cache size (KB) 786.71 196.88 49.43 196.88 49.43 786.71 3146.00 786.71 50331.92

Speedup factor 86.22 81.13 83.54 28.73 152.98 105.73 120.01 788.41 11.77

TABLE IV: Feature extracting time with and without the usage of feature cache

0
400
800
1200
1600
2000

To
ta

l
Ti

m
e

(s
)

cvc4 z3 msat btor yices beta alpha
0

20

40

60

80

100

So
lv

e
R

at
e

(%
)

(a) KLEE

0
400
800
1200
1600
2000

To
ta

l
Ti

m
e

(s
)

btor beta z3 cvc4 alpha msat yices
0

20

40

60

80

100

So
lv

e
R

at
e

(%
)

(b) angr

0
4000
8000
12000
16000
20000

To
ta

l
Ti

m
e

(s
)

btor msat yices cvc4 alpha z3 beta
0

20

40

60

80

100

So
lv

e
R

at
e

(%
)

(c) benchmark

Fig. 4: Solving performance of every solver in different datasets

Experiment Results. The experiment results are shown in
Figure 4 (more details in TABLE V). Based on the results, the
performance of our DNN models is the closest to the best
solver with respect to both the solve rate and the total time in
the KLEE and benchmark datasets.

In the KLEE dataset, almost all of the SMT solvers have a
100% solve rate. Our DNN models perform better than other
SMT solvers in terms of total time, even with additional feature
extraction and prediction overhead.

In the benchmark dataset, the DNN-beta model has the
highest solve rate compared to other solvers. Despite the fact
that btor requires the least total time, it can only solve about
20% of the data, which may be intolerable as this could prevent
the symbolic execution engine from exploring further paths if
most of the constraints are unsolved. z3 seems to be the best
solver among the five SMT solvers, because z3 can solve
almost 98% of data within a reasonable time. However, our
DNN-beta results in about 2x speedup and can solve almost
99% of data.

In the angr dataset, our DNN models do not perform well
but the performance is still tolerable compared with other
solvers like btor, cvc4 and z3, which result in 1.8x to 5x
performance speedup. We believe that increasing the size of
the angr dataset can improve the performance of our DNN
model.

Notice that in the SE dataset, the performance of DNN-
alpha is better than DNN-beta. This is because all the solvers
we tested can solve all symbolic data, and the factors of
timeout and error do not matter much. Thus, choosing
the fastest solver will be the best decision. On the other hand,

in the benchmark dataset, the number of timeouts and
errors becomes an important factor for solver selection.
DNN-beta can make better decisions in choosing the fastest
and solvable solver than choosing the fastest but unsolvable
solver.

VI. CONCLUSION AND FUTURE WORK

In this work, we present Path Constraint Classifier (PCC),
a new component in symbolic execution engines, which aims
to improve the efficiency of constraint solving by predicting
the fastest solver for a given path constraint. We first conduct
a preliminary study on modern SMT solvers to demonstrate
the need for solver selection. Next, we define the solver se-
lection problem in symbolic execution and propose a machine
learning based solution with several optimizations to tackle this
problem. PCC transforms path constraints into a syntax tree to
extract features, and uses Deep Neural Network (DNN) with
two self-designed loss functions to predict the best solver in
different scenarios. We also propose constraint feature cache
to greatly reduce the overhead in feature extraction. Finally,
we evaluate the solving performance of PCC and demonstrate
that it can achieve better performance than individual SMT
solvers, thus improving the efficiency of constraint solving.

Several interesting research directions remain for future
exploration. As our solution is based on machine learning,
one future work is to perform feature engineering and model
tuning (e.g., a better loss function) to increase the robustness
of prediction results while reducing the overhead cost of the
determination procedure. To improve the model, we would also
like to collect more symbolic data (e.g., path constraints in the

6

Solver Solve Rate Number of
Timeout

Number of
Error Solving Time Timeout

Time Error Time
Feature

Extraction
Time

Predict Time Total Time

KLEE

best 100.00% 0 0 137.70 0.00 0.00 - - 137.70
DNN-alpha 100.00% 0 0 150.09 0.00 0.00 14.54 2.28 166.91
DNN-beta 100.00% 0 0 150.61 0.00 0.00 14.54 2.23 167.38

yices 100.00% 0 0 186.18 0.00 0.00 - - 186.18
btor 100.00% 0 0 226.26 0.00 0.00 - - 226.26
msat 100.00% 0 0 444.24 0.00 0.00 - - 444.24
z3 100.00% 0 0 559.31 0.00 0.00 - - 559.31

cvc4 99.99% 1 0 1526.81 100.01 0.00 - - 1626.82

ANGR

best 100.00% 0 0 117.17 0.00 0.00 - - 117.17
yices 100.00% 0 0 174.37 0.00 0.00 - - 174.37
msat 100.00% 0 0 318.17 0.00 0.00 - - 318.17

DNN-alpha 100.00% 0 0 318.47 0.00 0.00 5.10 1.14 324.71
DNN-beta 99.99% 1 0 324.96 102.02 0.00 5.10 1.11 433.19

btor 99.98% 2 0 557.09 204.04 0.00 - - 761.13
cvc4 100.00% 0 0 1101.88 0.00 0.00 - - 1101.88
z3 100.00% 0 0 1638.07 0.00 0.00 - - 1638.07

BENCHMARK

btor 18.49% (97.62%)* 1 2600† 335.23 102.41 1.54 - - 439.18
best 100.00% 0 0 883.04 0.00 0.00 - - 883.04

DNN-beta 98.65% 30 12 1445.6 3102.72 0.21 101.88 0.36 4650.77
DNN-alpha 97.87% 34 34 1505.95 3442.35 80.10 101.88 0.36 5130.64

msat 30.15% (94.94%)* 34 2195† 3265.41 3470.19 4.98 - - 6740.58
yices 57.69% (94.73%)* 68 1282† 1241.03 6801.32 6.23 - - 8048.58

z3 97.96% 62 3 2146.23 6386.44 79.81 - - 8612.48
cvc4 93.61% 98 106 4364.52 9811.21 3.22 - - 14178.95

TABLE V: The performance of different SMT solvers and our PCC models at benchmark, angr and KLEE dataset

depth of a program) for training to fully recognize the ability
of SMT solvers.

Another interesting direction is examining how to combine
PCC with other solver optimization techniques, including con-
straint simplification, query reduction, and improved solvers,
and evaluating the performance. It is also important to note
that when using PCC, the symbolic execution engines may
frequently switch between different solvers. This might cause
frequent context switching that affects the overall performance
of symbolic execution.

Finally, existing symbolic execution engines mostly treat
solvers as a blackbox. It would be interesting to see whether
and how a symbolic execution engine can be more tightly
integrated with solvers. For example, the symbolic execution
engine could dynamically determine how to encode a path
condition [21] such that the constraints can be solved quickly
by solvers.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science
and Technology of Taiwan under grant MOST 108-2636-E-
002-008 and by Institute for Information Industry under grant
106-EC-17-D-11-1502.

*The bracket is the solve rate of supported logic.
†The solver specializes on specific types of logic, which may lead to a high

error rate because unsupported logic is counted as an error in our experiment.

REFERENCES

[1] A. Aquino, F. A. Bianchi, M. Chen, G. Denaro, and M. Pezzè,
“Reusing constraint proofs in program analysis,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 305–315.
[Online]. Available: http://doi.acm.org/10.1145/2771783.2771802

[2] A. Aquino, G. Denaro, and M. Pezzè, “Heuristically matching
solution spaces of arithmetic formulas to efficiently reuse solutions,”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 427–437. [Online]. Available: https://doi.org/10.1109/ICSE.2017.46

[3] Barrett, C. de Moura, L. Stump, and Aaron, “Smt-comp: Satisfiability
modulo theories competition,” in Computer Aided Verification, Etes-
sami, K. Rajamani, and S. K., Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 20–23.

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the
23rd International Conference on Computer Aided Verification, ser.
CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 171–177.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032305.2032319

[5] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” 2016. [Online]. Available: www.
SMT-LIB.org

[6] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK), A. Gupta and D. Kroening, Eds.,
2010.

[7] M. Borges, M. d’Amorim, S. Anand, D. Bushnell, and C. S. Pasareanu,
“Symbolic execution with interval solving and meta-heuristic search,”
in Proceedings of the 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, ser. ICST ’12.

7

Washington, DC, USA: IEEE Computer Society, 2012, pp. 111–120.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2012.91

[8] R. Brummayer and A. Biere, “Boolector: An efficient smt solver
for bit-vectors and arrays,” in Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems: Held As Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009,, ser. TACAS ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 174–177. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00768-2 16

[9] S. Bucur, “Encoding Symbolic Expressions as Efficient Solver
Queries,” 2015. [Online]. Available: http://dslab.epfl.ch/blog/2015/07/
26/encoding-symbolic-expressions.html

[10] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,”
in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[11] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’13. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 93–107. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-36742-7 7

[12] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[13] P. Dinges and G. Agha, “Solving complex path conditions through
heuristic search on induced polytopes,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 425–436. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635889

[14] B. Dutertre, “Yices 2.2,” in Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559. Berlin,
Heidelberg: Springer-Verlag, 2014, pp. 737–744. [Online]. Available:
https://doi.org/10.1007/978-3-319-08867-9 49

[15] M. Gario, A. Micheli, and F. B. Kessler, “Pysmt: a solver-agnostic
library for fast prototyping of smt-based algorithms,” in Proceedings
of the 13th International Workshop on Satisfiability Modulo Theories
SMT, 2015.

[16] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’05. New York, NY, USA: ACM, 2005, pp. 213–223.
[Online]. Available: http://doi.acm.org/10.1145/1065010.1065036

[17] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, pp. 20:20–20:27, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2090147.2094081

[18] E. Goto, “Monocopy and associative algorithms in an extended lisp,”
1974.

[19] A. Healy, R. Monahan, and J. F. Power, “Predicting SMT solver
performance for software verification,” in Proceedings of the Third
Workshop on Formal Integrated Development Environment, F-IDE@FM
2016, Limassol, Cyprus, November 8, 2016., 2016, pp. 20–37. [Online].
Available: https://doi.org/10.4204/EPTCS.240.2

[20] X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint
solutions to improve symbolic execution,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: ACM, 2015, pp. 177–187. [Online].
Available: http://doi.acm.org/10.1145/2771783.2771806

[21] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” SIGPLAN Not., vol. 47, no. 6, pp.
193–204, Jun. 2012. [Online]. Available: http://doi.acm.org/10.1145/
2345156.2254088

[22] X. Li, Y. Liang, H. Qian, Y.-Q. Hu, L. Bu, Y. Yu, X. Chen, and X. Li,
“Symbolic execution of complex program driven by machine learning
based constraint solving,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, ser.
ASE 2016. New York, NY, USA: ACM, 2016, pp. 554–559. [Online].
Available: http://doi.acm.org/10.1145/2970276.2970364

[23] M. Lin, X. Hou, R. Liu, and L. Ge, “Enhancing constraint based test
generation by local search,” in Proceedings of the 6th International
Conference on Software and Computer Applications, ser. ICSCA ’17.
New York, NY, USA: ACM, 2017, pp. 154–158. [Online]. Available:
http://doi.acm.org/10.1145/3056662.3056672

[24] H. Liu, E. R. Dougherty, J. G. Dy, K. Torkkola, E. Tuv, H. Peng,
C. Ding, F. Long, M. Berens, H. Liu, L. Parsons, Z. Zhao, L. Yu,
and G. Forman, “Evolving feature selection,” IEEE Intelligent Systems,
vol. 20, no. 6, pp. 64–76, Nov 2005.

[25] K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner,
T. Kahsai, Z. Rakamarić, and V. Raman, “Jdart: A dynamic symbolic
analysis framework,” in Proceedings of the 22Nd International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 9636. New York, NY, USA: Springer-
Verlag New York, Inc., 2016, pp. 442–459. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-49674-9 26

[26] I. Mierswa and K. Morik, “Automatic feature extraction for classifying
audio data,” Mach. Learn., vol. 58, no. 2-3, pp. 127–149, Feb. 2005.
[Online]. Available: http://dx.doi.org/10.1007/s10994-005-5824-7

[27] H. Palikareva and C. Cadar, “Multi-solver support in symbolic
execution,” in Proceedings of the 25th International Conference
on Computer Aided Verification, ser. CAV’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 53–68. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-39799-8 3

[28] C. S. Păsăreanu, N. Rungta, and W. Visser, “Symbolic execution
with mixed concrete-symbolic solving,” in Proceedings of the 2011
International Symposium on Software Testing and Analysis, ser. ISSTA
’11. New York, NY, USA: ACM, 2011, pp. 34–44. [Online].
Available: http://doi.acm.org/10.1145/2001420.2001425

[29] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing
engine for c,” in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, 2016.

[31] M. Souza, M. Borges, M. d’Amorim, and C. S. Păsăreanu, “Coral:
Solving complex constraints for symbolic pathfinder,” in Proceedings
of the Third International Conference on NASA Formal Methods, ser.
NFM’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 359–374.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1986308.1986337

[32] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
reusing and recycling constraints in program analysis,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 58:1–58:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393665

[33] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl,
“Automatic feature selection in neuroevolution,” in Proceedings of the
7th Annual Conference on Genetic and Evolutionary Computation,
ser. GECCO ’05. New York, NY, USA: ACM, 2005, pp. 1225–1232.
[Online]. Available: http://doi.acm.org/10.1145/1068009.1068210

[34] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla:
Portfolio-based algorithm selection for sat,” J. Artif. Int. Res.,
vol. 32, no. 1, pp. 565–606, Jun. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1622673.1622687

[35] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver
for web application analysis,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 114–124. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491456

8

