
CLIK on PLCs! Attacking Control Logic with
Decompilation and Virtual PLC

Sushma Kalle
University of New Orleans

skalle1@uno.edu

Nehal Ameen
University of New Orleans

nameen@uno.edu

Hyunguk Yoo
University of New Orleans

hyoo1@uno.edu

Irfan Ahmed*
Virginia Commonwealth University

iahmed3@vcu.edu

Abstract—This paper presents CLIK, a new remote attack
on the control logic of a programmable logic controller (PLC)
in industrial control systems. The control logic defines how a
PLC controls a physical process such as a nuclear plant. A full
control logic attack faces two critical challenges: 1) infecting the
control logic in a PLC at a field site and, 2) hiding the infection
from engineering software at a control center since the software
can obtain the infected logic from the PLC and reveal it to a
control engineer. The existing academic efforts only (partially)
address the former. CLIK is a first practical control-logic attack
that deals with both challenges successfully. It modifies the
control logic running in a remote target PLC automatically to
disrupt a physical process. CLIK also employs a new virtual
PLC approach that hides the malicious modifications by engaging
the engineering software with a captured network traffic of the
original (uninfected) control logic. It is fully implemented on
real hardware/software used in industrial settings and is made
publicly available for academic research on control logic attacks1.
CLIK consists of four phases and takes less than a minute
to complete an attack cycle. As part of the implementation,
we found a critical (zero-day) vulnerability in the password
authentication mechanism of a target PLC, which allows the
attacker to overwrite password hash in the PLC during the
authentication process and gain access to the (protected) control
logic. We have disclosed the vulnerability responsibly to the PLC
vendor who has already patched the vulnerability2.

I. INTRODUCTION

Industrial control systems (ICS) are used to automate
physical processes such as wastewater treatment plant, gas
pipeline, and power grid station. These systems are increas-
ingly connected to corporate network and Internet for sig-
nificant economic gain. Unfortunately, the connectivity also
makes them vulnerable to cyberattacks [16], [17], [21], [23],
[38], [24], [29], [5], [7], [42]. To secure ICS environments, it
is imperative to understand their threat vectors, i.e., how an
adversary can target these systems.

An ICS environment consists of a control center and
field sites. The physical processes are located at field sites
and are monitored and controlled via sensors, actuators, and

*Ahmed completed this work while he was at the University of New Orleans
1https://gitlab.com/hyunguk/clik
2https://ics-cert.us-cert.gov/advisories/ICSA-18-240-01

programmable logic controllers (PLCs). The PLCs send data
to ICS services at the control center such as human-machine-
interface (HMI), Historian and Engineering Workstation. They
are programmed to define a control logic to maintain the
desired state of a physical process [18]. For instance, in a
gas pipeline, a PLC monitors and controls the gas pressure of
the compressed gas in the pipe. The control logic of the PLC
is defined as follows: when the gas pressure exceeds a certain
threshold, the PLC opens a solenoid valve (i.e., an actuator) to
release some gas, which reduces the gas pressure in the pipe.

An attacker targets the control logic to compromise a PLC
to sabotage a physical process. For instance, Stuxnet [24] in-
fects the control logic of the Siemens S7-300 PLCs controlling
variable frequency drives of centrifuges. The infected logic
disrupts the normal operation of the drives by changing their
motor speed periodically from 1,410 Hz to 2 Hz to 1,064 Hz
and then over again.

A full control logic attack faces two critical challenges:
First is the malicious modifications of the control logic in a
target PLC at a field site. Second is the hiding of the infected
logic from the engineering software at the control center, which
can acquire the logic from the PLC remotely and reveal the
infection to a control engineer. The existing academic efforts
on control logic attacks such as SABOT [33], Ladder Logic
Bomb [26], Dynamic Payloads [32], PLCinject [31], and PLC-
Blaster [41] (partially) focus on the former challenge and do
not consider the latter. Furthermore, the current real-world
attacks heavily rely on exploiting engineering software to
infect the control-logic, which is a significant limitation and
requires access to the software in a target environment before
launching the attack. For instance, Stuxnet compromises STEP
7 engineering software (by replacing s7otbxdx.dll that
handles communication with the PLC) to infect the logic.
Attack Scenario. In this paper, we present CLIK, an au-
tonomous full attack-chain on the control logic of a PLC.
We assume a realistic attack scenario where an engineering
software in the control center is not accessible for the attack,
thereby making the attack more challenging. In particular,
the attack cannot utilize the engineering software to do the
following: 1) transfer the control logic to/from the PLC, 2)
use the project files of the current control logic of a target
PLC residing at the engineering workstation to make malicious
modification, and 3) provide the security credentials (such as
password) to the PLC to access the control logic.

The goal of the CLIK attack is to introduce malicious
logic in a target PLC automatically . The CLIK attack is
initiated after the attacker penetrates into an ICS network and
can send/receive messages to/from a target PLC remotely. The

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23074
www.ndss-symposium.org

compromising of ICS network is out of the scope of this work
and can be achieved via typical attack vector in our IT world
such as infected USB device, vulnerable web server, etc.
Proposed Attack. CLIK consists of four phases; It involves
compromising the PLC security measures and stealing the
control logic from a PLC, decompiling the stolen (compiled)
binary of the control logic to inject the malicious logic,
and then transferring the infected binary back to the PLC.
The final phase hides the malicious logic in the PLC from
the engineering software. CLIK employs a new virtual-PLC
approach utilizing a captured network traffic of original control
logic. When the engineering software attempts to acquire the
control logic from the PLC, the virtual PLC intercepts the
request and then, responds by sending the original control logic
using the captured traffic. Each CLIK phase is an individual
attack i.e., data exfiltration (phase 1), reconnaissance (phase
2), infection (phase 3), and stealth (phase 4). CLIK combines
these attacks systematically to create a complete attack-chain.

We implement CLIK on real hardware/software used in
industrial settings and make it publicly available to facilitate
academic research [13]. As part of implementation, CLIK
exploits a critical (zero-day) vulnerability in the password
authentication mechanism of a target PLC and contains a
decompilation capability referred to as Eupheus for the
Instruction List (IL) defined by IEC 61131-3 [2] to program
PLCs.

We evaluate CLIK on 52 control logic programs of real-
world physical processes such as traffic light, gas pipeline,
and hot water tank. The evaluation results show that CLIK
completes its attack cycle in less than a minutes successfully.
Contributions. We summarize the paper contribution as:

• Full attack-chain. We design a new complete attack-
chain for infecting control logic including vulner-
ability exploitation, decompilation, malicious logic
generation, and concealment of infection via a novel
virtual-PLC approach.

• Practical implementation. We implement a first full
practical attack on control logic to facilitate aca-
demic research on this topic. The attack is performed
successfully on real ICS hardware/software used in
industrial settings.

• Decompiler. We develop a decompiler that transforms
a low-level control-logic in RX630 microcontroller
instructions [37] to a high-level instruction list (IL)
program. Although the decompiler is used for the
attack, it can be applied to a variety of security
applications such as PLC Code Analytics [43], [34],
and ICS network forensics [39], [40].

• Critical zero-day vulnerability. We present a success-
ful exploitation of a critical (zero-day) vulnerability
on password authentication mechanism of Modicon
M221 PLC. M221 is a compact controller introduced
by Schneider Electric in August 2014 to replace its
Twido controllers [4]. The PLC represents the latest
technology to meet the requirements of the Industry
4.0 trend of automation and data exchange in manu-
facturing.

II. CONTROL LOGIC INFECTION ATTACK (CLIK)
Figure 1 shows a high-level overview of CLIK, the pro-

posed control logic infection attack comprising of four phases:

1) Stealing the original control logic from a target PLC, 2)
decompiling the stolen low-level (binary) representation of the
control logic to its high-level source code, 3) infecting the
source code via rule-based automated approach, followed by
compiling the code to a binary representation (that can run on
the PLC) and then, transferring the binary back to the PLC to
infect the control logic, and finally 4) concealing the infected
logic in the compromised PLC from an engineering software
at the control center using a virtual PLC.

A. Phase I: Stealing the Control Logic from a Target PLC
The first phase involves gaining access to a target PLC and

retrieves the control logic remotely over the network.
Subverting Security Measure. This phase includes compro-
mising any security measures that are supposed to protect a
PLC from remote cyber attacks such as theft of control logic.
The security measures include integrity protection of PLC
firmware, configuration and control logic, access control and
firewall to segregate PLC based on the access medium (such
as the physical interface) and white-listing of IP addresses, and
authentication (such as password) to restrict remote read/write
access to PLC.

In Section III-A, we will demonstrate an attack case of
subverting the password authentication of a real PLC by
exploiting a zero-day vulnerability that we found during the
implementation of CLIK.
Retrieving Control Logic. After security measures are com-
promised, CLIK retrieves the control logic from the PLC. It
communicates with the PLC using the protocol supported by
the PLC and then, requests the control logic. A control logic
is typically divided into three parts: configuration (metadata)
blocks, code blocks, and data blocks. Configuration blocks
have the mapping addresses and sizes of other blocks. A code
block is the machine code, which executes in PLCs. Data
blocks contain values of variables used by a code block such
as input, output, timer, and counter. In most cases,
mapping addresses and sizes of code and data blocks vary,
therefore CLIK first obtains the configuration blocks to get
valid mapping addresses and sizes of other blocks.

B. Phase II: Decompiling the Stolen Binary to Source Code
The stolen control logic is in low-level (binary) format.

The second phase decompiles the binary into its respective
source code for automating the infection phase. The source
code is written in one of the five high-level languages defined
in IEC 61131-3 i.e., Instruction List, Ladder Logic, Sequential
Function Charts, Function Block Diagram, and Structured
Text. Figure 2 illustrates the decompilation process of CLIK,
which takes the code block as an input and utilizes a database
of binary code to instruction (defined in IEC 61131-3) mapping
for decompilation. Furthermore, CLIK takes into account the
data block to obtain additional configuration parameters for
the instructions. For instance, the timer instruction has the
parameters of preset, time base and the type of timer (Timer
On - TON, Timer Off - TOF, Pulse Timer - TP) in data block.

C. Phase III: Infecting Control Logic via Rule-based Approach
The third phase is the infection of the control logic that

makes rule-based malicious modifications in the (decompiled)
source code of the control logic, and then, compiles the
modified infected code to a binary that can run on the PLC.
Lastly, it transfers the binary to the PLC.

2

Programmable Logic
Controller (PLC)

(password protected)

Subvert Security
Measure

Exploiting a vulnerability

Retrieve Control Logic
Request Control Logic

Decompiler
Normal Logic in

Source Code

Rule-based Malicious
Logic Generator

Compiler

Transfer Control Logic

Phase I:
Stealing

Control Logic Binary
from PLC

Phase II:
Decompiling the
Stolen Binary to

Source Code

Phase III:
Infecting the

Control Logic in
the PLC

Engineering
Software

(ES)

Normal
Logic

Normal
Logic

Virtual
PLC

When ES tries to transfer logic

When ES tries to retrieve logic

Phase IV:
Concealment of Infection

from Engineering Software

Normal
Logic in Binary

Normal
Logic in Binary

Malicious Logic
in Source Code

Malicious
Logic in Binary

Malicious
Logic in Binary

Fig. 1: High-level overview of CLIK, a control logic infection attack

Code
Block

Decompilation

Source Code

Binary codeInstructions

Data
Block

Mapping
Database

Fig. 2: Decompilation of the Control Logic

Rule-based Malicious Logic Generator. CLIK employs a
rule-based approach to serve two purposes: 1) identifying a
target control logic and then, 2) infecting it automatically.

To identify a target control logic, CLIK leverages the
semantics of the (decompiled) source code and estimated range
of critical variables of a target physical process. CLIK for
instance, can look for special instructions in the decompiled
code to infer meaning of specific variables such as set-
points. These instructions include PID instructions of Allen-
Bradley RSLogix 500, and drive blocks of Schneider Electric
SoMachine-Basic. Furthermore, CLIK can look for the data
to identify estimated range of critical variables representing a
physical process. For instance, similar to Stuxnet, CLIK can
observe the data that range between 807 Hz and 1,210 Hz to
identify specific variable frequency drives of centrifuges.

To infect the identified control logic, CLIK utilizes precon-
figured infection rules including the following: replacing input
or output bits with memory bits (to disturb normal update
on output pins), replacing operators in equations, modifying
set-points, modifying control flow determinants (which are
variables to influence a decision at a conditional branch of con-
trol logic), insert/delete instructions/rungs, etc. For example,
similar to Stuxnet (but without a pregeneration of malicious
payload), an infection rule can be configured to insert a new
rung that manipulates the set-point of motor speed periodically
from 1,410 Hz to 2 Hz to 1,064 Hz leading to sabotage the
centrifuges controlled by the target PLC.
Compiler. After the decompiled code block is infected, it is
compiled to a binary that can run on the target PLC. The

compiler uses the same database that the decompiler used for
conversion but the other way around. It searches for the binary
code for a high level instruction in the database and replaces
the latter with the former.
Transfer of the Control Logic to the PLC. The infected
control logic is transferred to the target PLC using the write
requests of the PLC protocol. The blocks of the infected logic
should be mapped to the address of the original blocks to
ensure the stable transition of the PLC to the infected logic.
D. Phase IV: Concealing the Malicious PLC Control Logic
from Engineering Software

When the control logic in a target PLC is infected, CLIK
hides the infection from the engineering software to sustain
the operation of the infected logic.
Virtual PLC. We present a new infection hiding method
based on a virtual PLC. The goal of the virtual PLC is to
achieve stealthiness by avoiding significant perturbation in the
environment including installing malicious DLL or generating
duplicate traffic.

The virtual PLC utilizes the captured network traffic of the
original control logic obtained in phase 1 of CLIK to engage
engineering software. It intercepts the request messages from
an engineering software and then, replies with valid response
messages using the captured traffic. In other words, the virtual
PLC mimics the behavior of an uninfected real PLC from
engineering software’s viewpoint.
A Systematic Approach of Building a Virtual PLC. Figure 3
presents a systematic approach to build a virtual PLC. The
virtual PLC faces two main challenges. 1) when engineering
software sends a request message, virtual PLC has to identify
the corresponding response messages in the captured traffic,
and 2) also adjust the dynamic fields in the response messages
whose values vary within and across different sessions. To
solve these challenges, the virtual PLC develops commu-
nication template and dynamic field format in two stages
for a target PLC. It executes both stages offline during the
preparation of the CLIK attack.

We build virtual PLC based on our insight that the regular
traffic (excluding messages containing control logic in their

3

Control
LogicControl

Logic

Virtual
PLC

Engineering
Software

Target
PLC

CLIK phase 4) Concealment of Infection from Engineering Software

Control
Logic

Pcap files containing
identical control logic

• Control logic read/write message format
• Session id field
• Sequence number field

Pcap files containing
different control logic

Extraction
&

Grouping
Deduplication

Remove
control

logic
read/write

Alignment
&

Differential
analysis

Identify
control logic

checksum
field

Merging

Control Logic
Uploader

Extraction
&

Grouping
Deduplication

Alignment
&

Differential
analysis

Control
LogicControl

Logic

Control
Logic

Communication
Template

Dynamic
Field Format

Control logic
blocks

CLIK phase 1) Stealing Control Logic Binary from PLC

Upload requests

Normal
Logic

Requests

Responses

(Stage 1)

(Stage 2)

Fig. 3: A systematic approach to build a virtual PLC

payload) between engineering software and PLC consist of a
manageable number of different messages that can be repre-
sented as a communication template. If a virtual PLC receives
a request message, it looks up the template to find a matching
request and replies with the corresponding response message.
This approach is black-box that does not require the complete
semantic knowledge of request/response message content and
formats, thereby, saving time and effort for reverse engineering
every aspect of the protocol.

Virtual PLC, however, has to take into account some
dynamic fields, of which values may change within a session
(e.g., sequence number), between sessions (e.g., session id),
and for control logic (e.g., control logic checksum). Also,
since the communication template does not include messages
containing control logic, the virtual PLC has to understand how
to generate valid control logic read/write response messages.
To this end, the virtual PLC needs to understand these dynamic
parts of the protocol format, refer to as dynamic field formats.
This section further describes a two-stage process of deriving
a communication template from network-traffic-captures and
building an dynamic field format.
Deriving Dynamic Field Format. Stage 1 collects multiple net-
work packet captures of the same control logic and then,
processes each packet capture as follows: encapsulated PLC
protocol messages are extracted and grouped as request and
response pair. For instance, some proprietary PLC protocols
are encapsulated by the Modbus/TCP protocol which is a
de facto standard communication protocol widely used in
industrial control systems [1]. Since a Modbus request and
its corresponding Modbus response have the same transaction
identifier number, encapsulated PLC protocol messages can be
grouped based on the transaction identifier of the Modbus/TCP
protocol. After pairing, duplicate pairs are eliminated. Dupli-
cated messages can exist if there is periodical status check
between a PLC and its engineering software. This process is
repeated for all packet captures.

After that, messages in packet-captures are aligned and
differences are analyzed. It is possible to recognize a large
chunk of aligned messages since the messages contain the
same control logic, which leads to find some dynamic fields of
a proprietary protocol. This includes session id and sequence
number, and control logic read/write message formats.

Building a Communication Template. Stage 2 is similar to
stage 1 except that it uses different control logic programs
to collect multiple network packet captures. It processes each
network capture by extracting and grouping the messages in re-
quest/response pairs, followed by eliminating duplicate pairs of
the messages. If a sequence number field is recognized in stage
1, it is ignored in the deduplication step. The request/response
messages involving control logic read/write are removed based
on the dynamic field format inferred in stage 1.

The remaining messages of the packet captures are aligned,
and differences between them are analyzed. At this step, a
session id field is ignored. The aligned message chunks reveal
control-logic dependent fields (since other dynamic fields are
ignored in the previous steps) such as checksum fields. These
fields, as well as the previously derived format in stage 1,
compose dynamic field format. Lastly, in the merging step, the
messages are merged ignoring all the derived dynamic fields
to make a communication template consisting of the unique
request and response pairs.

During the attack, a virtual PLC finds the corresponding
messages to a request message using the communication tem-
plate and then, corrects the dynamic fields using the dynamic
field format before sending the messages to engineering soft-
ware. If the request message is not in the template, it means it
is a control logic read/write request message. The virtual PLC
generates a valid response message according to the current
control logic obtained in phase 1 of CLIK.

4

III. REAL-WORLD IMPLEMENTATION OF CLIK
We implement CLIK on a real PLC, Schneider Electric

Modicon M221, and its vendor-supplied engineering software
(SoMachine-Basic). CLIK is developed in Python and consists
of five modules: 1) a password attack module, 2) a control logic
upload & download module, 3) IL decompiler & compiler, 4)
a malicious logic generator, and 5) a virtual M221 PLC.

A. Subverting PLC Password Protection by Exploiting a Zero-
day Vulnerability

Since the latest version of the M221 PLC is protected by
a password authentication mechanism, an unauthorized user is
not allowed to read the control logic of the PLC. We found
a zero-day vulnerability in the authentication mechanism and
further developed a proof-of-concept exploit to subvert the
password protection. We confirmed that the latest versions
of firmware (v1.5.1 and v1.6.0) and SoMachine-Basic (v1.5
and v1.6) are impacted by the vulnerability. We disclosed
the vulnerability responsibly to the PLC vendor who already
patched it. ICS-CERT issued the advisory and three CVEs [8].

Figure 4(a) describes the authentication process between
an M221 PLC and SoMachine-Basic. First, the engineering
software requests a one-byte random mask (mask1) from the
PLC. After receiving (mask1), the engineering software sends
one-byte random mask (mask2) to PLC along with the masked
value of the password hash for authentication. The masked
value is computed by XORing the original password hash
(SHA-256) against both mask1 and mask2. When the PLC
receives the masked hash and mask2, it computes its masked-
hash using the same XOR operation initially performed by the
engineering software. If both masked-hashes are identical, the
PLC grants access permissions to the engineering software.

The M221 PLC does not allow reading control logic
remotely before authentication. However, writing to the PLC is
still allowed, which is an exploitable vulnerability. We demon-
strate that an attacker can reset the password by overwriting the
original password hash with its own. However, the challenge
is to identify the correct location of the hash code in the PLC.

Figure 4(c) shows the address space layout of the M221
PLC. We find out that the password hash is always preceded
by a variable size zip file containing metadata of the control
logic. We also discover that the zip file is mapped at the
fixed address (0xd000). Furthermore, the code block of the
control logic, which is a machine code of Renesas RX630
microcontroller [37], is always mapped at an arbitrary location
starting from 0xe000, referred to as random gap. Thus, we
compute that there is an unused area between the end of the
password hash and the address 0xe000.

To identify the correct location of the hash code to over-
write with new password hash, the attacker can compute
negative or positive offsets from a known reference point to
password hash. Unfortunately, the offsets are not consistent
because of the following reasons. To compute the positive
offset, we know the starting address of the zip file. However,
the size of the file varies and cannot be found during the attack.
To compute the negative offset, we know that the code block of
control logic starts from any random location after 0xe000.
However, the random location is not apparent making the offset
value unpredictable.

The other approach is to fill the memory between the zip
file and 0xe000 with the attacker’s password hash. However,

Algorithm 1 Pseudocode for password reset attack
Input: New password
Result: Reset password with the new password
1: newHash← sha-256 hash of the new password
2: mask1← Request mask1 from the PLC
3: mask2← A random number between 0 and 255
4: targetAddr← 0xdfe0
5: hashSize← 32
6: for i = 0 to hashSize− 1 do
7: maskedHash[i]← newHash[i]⊕ mask1⊕ mask2
8: end for
9: res← False
10: while res = False do
11: Send a write request (addr:targetAddr, size:hashSize, data:newHash) to PLC
12: Send an authentication request (mask2, maskedHash) to PLC
13: res← Received result of the authentication request
14: targetAddr← targetAddr− 1
15: end while

this approach is not reliable. It can start overwriting the
memory from 0xe000 to password hash, but cannot precisely
determine the end of the zip file since the file size varies, which
may cause exceeding the hash location and overwriting the zip
file contents.

Figure 4(b) shows the overview of the password authenti-
cation while exploit the vulnerability. Algorithm 1 describes
the exploit method that takes advantage of the vulnerability
and resets the original password of the M221 PLC with an
attacker’s password. It assumes that the password hash is
located anywhere starting from 0xe000 to a negative offset.
Since the size of the SHA-256 hash is 32 bytes (0x20), it
first overwrites the address 0xdfe0 ∼ 0xe000 with the
new password hash and then, sends an authentication request
to the target PLC using mask2 and maskedHash (line 12 in
Algorithm 1). If the authentication fails, it iteratively performs
the same steps. However, every iteration overwrites the hash
value to the memory location, which is one-byte negative offset
from the last address. For instance, the next address after the
first failed authentication is 0xdfdf ∼ 0xdfff. At some
point, an iteration overwrites the original hash code completely
with the correct alignment, which resets the password and
authenticates successfully.

B. Control Logic Uploader & Downloader
The Uploader and Downloader retrieves the control logic

from and transfer it to a PLC respectively. In the M221 PLC,
the control logic consists of six blocks. We refer to them as
conf1, conf2, code, data1, data2, and zipHash since
the protocol is proprietary and its specification is not publicly
available. The conf1 and conf2 blocks have information
of other blocks. The code block is the compiled version of
control logic in RX630 machine code. The zipHash block
consists of a zip file (metadata of control logic) and password
hash. The data1 block contains the values of the variables
used in control logic. The data2 block has information about
the data1 block.

The Uploader reads all six blocks of the control logic from
the M221 PLC. It first obtains the address and size of each
block and then, sends read requests to the PLC to retrieve
the entire logic. Figure 5 illustrates the process of getting the
address and size of the blocks. We find that the conf1 block is
always mapped at a fixed address (0xfed4) and has the fixed
size of 300 bytes. The conf1 block is then used to derive the
size of the zipHash block, and the size and address of the
conf2 block. The conf2 block is retrieved from the PLC
and then, used to derive the size of the data1, and data2
blocks, and the address and size of the code block. After
obtaining the addresses and sizes of the control-logic blocks,
the Uploader sends read requests to the PLC to retrieve them.

5

ES PLC1) Request mask1

2) Send mask1

3) Authentication request

(mask2, masked_hash)

4) Authentication response

1) Request mask1

2) Send mask1

3) Write request with new hash

4) Write response

5) Authentication Request

(mask2, masked_hash)

6) Authentication response

A zip file (metadata)

Password hash

Unused area

Random gap

Code block (RX630 machine code)

…

0xd000

0xe000

N (bytes)

CLIK PLC

a) Normal password authentication b) Password authentication while exploit

the vulnerability

c) The location of the password hash in the address space of

the M221 PLC

…

Fig. 4: Exploiting password authentication between Modicon M221 (PLC) and SoMachine Basic Engineering Software (ES)

conf1	block	–	start	address:	0xd4fe	(fixed),	size:	0x12c	bytes	(fixed)			

conf2	block	–	start	address:	0x4f6c,	size:	0x94	

zipHash	block	
Start:	0xd000	(fixed)	 	Size:	0x690		

Start	address	of	
conf2	block	

Size	of	conf2	
block	Size	of	

zipHash	block	

End	address	of	data2	
block	:=	0x567	(0x564	+	0x03)		

Start	address	of	
code	block	

Size	of	code	
block	

End	address	of	data1	block	
:=	0x92b4	(0x92a8	+	0x0c)	

data1	block	
Start:	0x8000	(fixed)	
Size:	0x12b4	
(0x92b4	–	0x8000)	

data2	block	
Start:	0x200	(fixed)	
Size:	0x367		
(0x567	–	0x200)	

code	block	
Start:	0xe08c	
Size:	0x24	

…	

Fig. 5: Start address and size of M221 control logic blocks

The Downloader sends write requests to the PLC with the
corresponding addresses and size of the control-logic blocks.
During the CLIK attack, the Malicious Logic Generator mod-
ifies either data1 or code block, or both. The Downloader
sends write requests containing modified-blocks with their
original addresses and current sizes that may be different from
original sizes after modifications.

C. IL Decompiler & Compiler
SoMachine-Basic (an engineering software) supports two

programming languages, ladder logic, and IL. The ladder
logic consists of rungs and each rung has instructions. The
SoMachine can interchange the instructions between the two
languages. When SoMachine compiles a control logic pro-
gram, it converts the program into RX630 machine code.
IL Decompiler. We implement the decompiler Eupheus that
takes the RX630 code as input and decompiles it into IL source
code. We choose IL over ladder logic because IL is text-based
and easier to manipulate. Ladder logic, on the other hand, is a
graphical language where each instruction is represented as a
graphical symbol and the instructions are grouped into rungs.

The decompiler Eupheus has two main components:
First, the database for mapping the opcodes to their corre-

sponding IL instructions (refer to Figure 6). Currently, the
database consists of 4079 mappings for 21 types of different in-
structions including input and output, relative branch, function
block, and operational block. Second, the mapper program,
which utilizes the data and config blocks in the M221
control logic and the mapping database to process the code
block. The mapper finds the RX630 instructions of the code
block in the database of opcodes to obtain their corresponding
IL instructions. We notice that RX630 program maintains the
essential constructs of both languages, IL and ladder logic
to facilitate the decompilation by SoMachine. The mapper
therefore, first identifies the rungs in RX630 program and then,
processes each rung to identify IL instructions.

The Figure 6 shows an example of RX630 control logic
that is mapped to IL instructions. The rungs are separated
when an output instruction is preceded by the instruction of
an input or a function block such as Timer or Counter.
In the latter case, the rung ends with END_BLK instruction
denoted as 0x7F1A11 in RX630 machine code. After the
rungs are separated, Eupheus decompiles each rung at a time
by identifying the instructions in the database and replacing
the RX630 machine code with equivalent IL instruction. The
logical operators AND and OR are denoted in binary control
logic as 0x23 and 0x22 respectively, followed by the byte
that indicates the total number of bytes of the next instruction.
For example, 0x7C0C23047C1C represents that the two LD
instructions 0x7C0C and 0x7C1C are in series connection
(AND) and the 0x04 shows that the next instruction has two
bytes.
IL Compiler. The compiler is the reverse process of the
decompiler Eupheus, which uses the same database to get
the equivalent RX630 machine code of every instruction in
Instruction List.

D. Malicious Logic Generator
CLIK employs a rule-based approach to inject malicious

logic in the decompiled IL code automatically. The decompi-
lation ensures that CLIK understands the binary control logic
(RX630 machine code) correctly since the opcode of each
instruction has different size; a longer opcode may contain
one or more smaller opcodes. Furthermore, the decompiled
IL code exposes the structure and semantics of control logic.
Thus, it is easier to parse and manipulate the control logic for
an IL code than RX630 machine code.
Rules. We define five heuristic rules to modify the IL code;
more rules can be included to improve the malicious logic
generator: Rule-1: If input/output bits are found then, replace

6

IL Hex Assembly Language

Rung 0

LD %I0.1 7c 1c BTST 1(imm), R12

AND

%I0.8

23 04 BCnd.B 4(pcdsp)

#cd: BNC(C == 0)

7c 8c BTST 8(imm), R12

ST %M1 fc e6 72 00 00 BMCnd 1(imm), [R7].B

#cd: BMC (C==1)

#dsp: 0x0000

Rung 1

LD %M307 f6 73 26 00 BTST 3(imm), [R7].B

#dsp: 0x0026

ST %M498 fc ea 72 3e 00 BMCnd 2(imm), [R7].B

#cd: BMC (C==1)

#dsp: 0x003e

02 RTS

XIC (LD %I0.1) Series Connection(AND) XIC (LD %I0.8)

OTE (ST %M1)

XIC (LD %M307)

OTE (ST %M498) End of control logic End of 1st rung

Start of 2nd rung

Mapping RX630 machine code with IL Instructions IL Instructions & corresponding RX630 machine code

Decompiled IL

(Eupheus)

Original IL

(SoMachine-

Basic)

Fig. 6: Mapping RX630 machine code with IL Instructions

Li

ne
Packet capture-1 Packet capture-2

1 --> 3a:29:a8:e0:01:07:3b:00:7f:1a:10:0b:00:... | --> 01:29:a8:e0:01:07:3b:00:7f:1a:10:0b:00:...

2 <-- 3a:fe | <-- 01:fe

3 --> 3a:29:00:d0:00:07:ec:00:37:7a:00:00:00:... | --> 01:29:00:d0:00:07:ec:00:37:7a:00:00:00:...

4 <-- 3a:fe | <-- 01:fe

5 --> 3a:29:ec:d0:00:07:ec:00:25:78:f6:26:4b:... | --> 01:29:ec:d0:00:07:ec:00:25:78:f6:26:4b:...

6 <-- 3a:fe | <-- 01:fe

7 --> 3a:29:d8:d1:00:07:ec:00:93:80:b5:ac:87:... | --> 01:29:d8:d1:00:07:ec:00:93:80:b5:ac:87:...

8 <-- 3a:fe | <-- 01:fe

9 --> 3a:29:c4:d2:00:07:5b:00:01:02:33:00:2d:... | --> 01:29:c4:d2:00:07:5b:00:01:02:33:00:2d:...

10 <-- 3a:fe | <-- 01:fe

11 --> 3a:29:54:4f:04:07:ac:00:aa:aa:00:00:00:... | --> 01:29:54:4f:04:07:ac:00:aa:aa:00:00:00:...

12 <-- 3a:fe | <-- 01:fe

+

+

+

Payload (control logic)
--> Request message (ES to PLC)
<-- Response message (PLC to ES)

Fig. 7: Alignment of M221 protocol message chunks

them with memory bits. Rule-2: If an analog variable which
affects control flow of the logic then, modify the analog value.
Rule-3: If a set-point is in a pre-configured (estimated) range
then, modify the set-point value. Rule-4: If an operational
block has an equation then, replace an operator in the equation.
For instance, the operator :=(equal) can be replaced with
<>(not equal). Rule-5: Insert a new rung at the end of the
logic with an energizer output of a target actuator to override
the output with the attacker’s desired value.
Injecting Malicious Logic via the Rules. We apply the
rules to inject three different malicious logic in a control
logic program. To generate the first malicious logic, the CLIK
applies the rule-1 to replace an I/O register of an actuator
with a memory I/O to control the actuator state via a memory
location. In the second malicious logic, the CLIK applies the
rule-5 to append a new rung at the end to energizing an output
used in the control logic.

To generate the third malicious logic, the CLIK applies the
rule-4 to disable the condition that energizes an actuator when
a certain threshold is met. This logic can cause severe damage
to an ICS system. For instance, consider a scenario where a
control logic energizes a red light when a particular threshold
is reached to indicate danger. If the attacker manipulates the
control logic using this method, it will disable the condition
to energize the light thereby, making the operator utterly
oblivious to the situation.

E. Virtual M221 PLC
We have developed a virtual M221 PLC based on the

systematic approach presented in Section II-D. Since the

a) Write request
…

…

Write	
request	

Address	

Data	size	

Status:	
success	

b) Reply with success status for a write request

Address	
Data	size	

MBAP	
header	

Modbus	
func;on	code	Address	

Start	of	data	

c) Read request

d) Reply with data for a read request

Status:	
success	

MBAP	
header	

Modbus	
func;on	code	

Session	
ID	

MBAP	
header	

Modbus	
func;on	code	

Read	
request	

MBAP	
header	

Modbus	
func;on	code	

Session	
ID	

Start	of	data	

Fig. 8: Read/write message format of the M221 protocol

a) Session ID request
…

Session	ID	
Request	

b) Reply with a session ID

Session	ID	

MBAP	
header	

Modbus	
func:on	code	

MBAP	
header	

Modbus	
func:on	code	

Status:	
success	

Fig. 9: Session ID request/response message format of the
M221 proprietary protocol

Modbus/TCP protocol encapsulates the M221 PLC protocol,
the encapsulated PLC protocol messages can be extracted
and grouped according to the transaction identifier of the
Modbus/TCP protocol. After deduplication of the extracted
messages, the remaining message of different packet captures

7

(containing identical control logic) are aligned to facilitate
recognition of the dynamic field format. Figure 7 shows a snip-
pet of aligned message chunks using the diff utility [10] on
two packet captures (of same control logic being downloaded
to the M221 PLC). The first byte of each message can be
inferred as a session id field because its values are identical
within a packet capture but different across the packet-captures.
The second byte of request messages can be recognized as a
write command (remember that the packets are captured when
control logic is being downloaded in this example) since its
values are always 0x29 in the packet captures. Also, we can
find a data-size field by recognizing that the two-byte little-
endian value of the seventh and eighth bytes of the request
messages exactly represents the size of the following bytes
(payload). The address field (third and fourth bytes in the
request messages) can also be easily noticeable since the values
are increased by the data size in some successive request
messages (line 5,7, and 9 in Figure 7). It cannot be recognized
as a type of sequence number field because its value is not
always increased by the data size of the previous request
message. For example, its value (0x4f54) of the request
message in the line 11 is not the sum of its value (0xd2c4)
and the data size (0x5b) of the previous request message.

Figures 8, 9 and 10 show the recognized dynamic field
format of the M221 PLC. When the virtual PLC receives
a read or write request message, it dynamically generates a
valid response message using the read/write message formats
(Figure 8 and the control logic blocks obtained in phase 1 of
CLIK. Figure 9 describes the session id request and response
message format.

Figure 10 shows the request/response messages used to
check the integrity of control logic periodically. We found two
types of request/response messages as shown in Figure 10.
The checksum value is also located at the end of the conf1
block (refer to Figure 10(a)). The byte order of the checksum
is slightly different for both message types. The checksum
reply messages in the communication template are corrected
according to the checksum in the conf1 block when the
virtual PLC loads the template. Along with the dynamic field
format, we derive a communication template for the M221
PLC according to the procedure explained in Section II-D. The
communication template consists of 40 messages (20 request
and response pairs) including two session id related messages
and four messages of the integrity checking of control logic.
To redirect the packets from the engineering software to the
virtual PLC, we use ARP poisoning for the proof-of-concept
along with the destination network address translation (DNAT)
of iptables [11] in the virtual PLC.

IV. EVALUATION

A. Experimental Settings
Lab Setup. We evaluate CLIK on Schneider Electric Modicon
M221 PLC (firmware v.1.6.0.1) and SoMachine-Basic v1.6.
The PLC is connected with simple physical processes; each
consists of toggle switches, push buttons, pilot lights, poten-
tiometer, ammeter, etc., and communicates with SoMachine-
Basic over Ethernet. SoMachine-Basic runs on Windows 7
virtual machine (VM), and the CLIK runs on a Ubuntu VM.
Dataset. Our dataset consists of 52 IL programs for evalua-
tion. The programs have 286 rungs and 1678 instructions in
total and are written for different physical processes such as

b) Checksum request-1

c) Checksum reply-1

Checksum	

Session	ID	
d) Checksum request-2

e) Checksum reply-2

a) Checksum in conf1 block

Checksum	
Request1	

MBAP	
header	

Modbus	
func=on	code	

Checksum	
Request2	

MBAP	
header	

Modbus	
func=on	code	

Status:	
success	

MBAP	
header	

Modbus	
func=on	code	

Status:	
success	

MBAP	
header	

Modbus	
func=on	code	

Checksum	

Session	ID	

Checksum	

Fig. 10: Integrity check of control-logic using a checksum in
M221 proprietary protocol

traffic light, gas pipe line and Hot water tank using various
conditional and operational instruction blocks.

B. Reliability of the Password Attack
We evaluate the password attack using the 52 different

control logic programs. Each program is set with a unique
password and downloaded to a real M221 PLC. We use a
random password generator [12] for each password to generate
strong passwords that are 25 characters long including lower
case, upper case, and numbers. We performed the attack on
the control logic programs and found that the attack always
resets the password successfully within 14 seconds. Table IV
(in Appendix) summarizes the experimental results. The total
block size represents the total sum of the six control logic block
sizes (conf1, conf2, zipHash, code, data1, data2).

While executing the attack, the initial target address is set
to 0xdfe0 and the zipHash block is always mapped to
0xd000. Every code block is mapped to a random address
after 0xe000, thereby we confirm that the overwriting the
target memory locations of the PLC during the attack does
not affect the integrity of the code block. Finally, we evaluate
the attack on two different firmware versions of the PLC i.e.,
1.5.1.0 and 1.6.0.1. The attack is successful on both versions.
Thus, we confirm that both firmware versions are vulnerable.

C. Compilation & Decompilation Accuracy
We evaluate the accuracy of the decompiler Eupheus and

its counterpart compiler using the dataset of 52 IL programs.
We download programs to a real M221 PLC, capture their
network traffic and then, extract them from the traffic. The
control logic programs are RX630 machine code that run
the PLC. We use Eupheus to decompile the programs into
their IL source code and then, compare the decompiled and
original IL code to measure the accuracy of Eupheus. The

8

TABLE I: The accuracy of the decompiler Eupheus

Symbol (Name)
SoMa-

chine
Basic

Eu-
pheus

Accu-
racy Symbol (Name)

SoMa-
chine
Basic

Eu-
pheus

Accu-
racy

LD (Load value) 339 339 100% DIV (Division) 11 11 100%
LDN (Load negated) 84 84 100% OR (Bitwise OR) 36 36 100%

OTE (Output energize) 251 251 100% AND (Bitwise AND) 136 136 100%
MUL (Multiplication) 31 31 100% M (Memory bit) 197 197 100%
TON (Timer on delay) 24 24 100% S (Set) 30 30 100%
TOF (Timer off delay) 4 4 100% OUT BLK (Block out) 44 44 100%

CTU (Count up) 8 8 100% END BLK (End of the block) 44 44 100%
R (Reset) 21 21 100% IN (Input-timer) 27 27 100%

END (End of control logic) 52 52 100% LDR (Load rising edge) 17 17 100%
CTD (Count down) 8 8 100% LDF (Load falling edge) 16 16 100%

EQU (Equal) 13 13 100% DR (Drum register) 8 8 100%
GEQ (Greater than or equal) 4 4 100% MW (Memory word) 71 71 100%

GRT (Greater than) 9 9 100% TP (Pulse timer) 8 8 100%
LEQ (Less than or equal) 5 5 100% MF (Memory float) 76 76 100%

LES (Less than) 3 3 100% Short (Short) 10 10 100%
NEQ (Not equal) 4 4 100% SB (System bit) 26 26 100%
ADD (Addition) 16 16 100% XOR (Bitwise XOR) 2 2 100%

SUB (Subtraction) 8 8 100% Done (Done) 1 1 100%
NOTE (Negated output

energize) 33 33 100% Write Var (Write Data to a
Modbus Device) 1 1 100%

Total 1678 1678 100%

experimental results are summarized in Table I and conclude
that Eupheus can accurately decompile RX630 machine code
into IL code since it does not encounter any intermingling of
data and code.

To measure the accuracy of the compiler, we compile the
decompiled version back to RX630 machine code and compare
both (recompiled and original) versions. The experimental
results show that the compiler can accurately recompile the
decompiled version into RX630 machine code.

D. Generation of Malicious Logic
We evaluate the generation of malicious logic using three

rules on the IL programs (traffic light, gas pipeline, hot
water tank, and others) in the datasets. Table III includes the
experimental results of infecting the programs successfully.

The first infection is performed on Traffic light program
that changes the I/O instructions to energize the output. We
trace the I/O instructions in the decompiled code and the
location of every I/O instruction is noted. The goal of the
infection is to illuminate all LEDs. Thus, the malicious Logic
generator redirects every input instruction to negated memory
bit input. Since the default Memory bit value is false,
the negated memory bit input will result in true thereby
illuminating all lights used in the Traffic light signal.

The second infection inserts a new rung into the IL program
of hot water tank. The program controls the inlet and outlet
valves, can fill or empty the tank, and maintains the water
temperature between the values. After getting the decompiled
IL code, we infected it include a rung, which has one output
LED (L1) as an input instruction and one random LED (L2)
as output instruction. The LEDs indicate different hazard
situations such as too hot or full tank. After appending the
rung, when the L1 is energized as per the program, L2 will also
be energized, causing a confusion between the two situations.

TABLE II: The experiment results on the virtual M221 PLC

Total
block

size(KB)

of
control
logic

Avg. # of
template
lookup

Avg. # of
dynamic

generation

Avg.
time
(sec)

Upload
success

rate

6 ∼ 7 5 105 35 10.82 100%
7 ∼ 8 19 110 38 12.12 100%
8 ∼ 9 25 109 41 12.09 100%
>9 3 115 54 12.15 100%

Total 52 109 40 11.98 100%

The third infection modifies the gas pipeline program,
which contains the analog flow determinants. This attack finds
the determinants and changes the operation block by modifying
the decision operators such as (< or >) to the assignment
operator (=). The modification causes an unexpected behavior
in the PLC operations.

E. Effectiveness of the M221 Virtual PLC
To evaluate the virtual M221 PLC, we first download each

control logic program to the virtual PLC, and extract control
logic blocks from it. Then, we verify whether the virtual PLC
can successfully upload the control logic blocks to SoMachine-
Basic, thereby SoMachine-Basic decompiles it and show its
source code. Table II shows the experimental results. The
number of dynamic generation means the number of times
read/write response messages are generated dynamically (note
that control logic read/write messages are not in the commu-
nication template) and the time represents the total operation
time of the virtual PLC to successfully upload control logic to
SoMachine-Basic. In the experiments, the virtual PLC uploads
every control logic successfully to SoMachine-Basic.

9

TABLE III: The complete CLIK execution of all four phases

Control logic # of
files

Original
logic

size(bytes)

Infected
logic

size(bytes)

CLIK
Success

rate

Traffic Light 1 8407 8415 100%

Gas Pipeline 1 10110 10110 100%

Hot Water Tank 1 7241 7245 100%

Others 49 8029
(avg.)

8034
(avg.) 100%

Total 52 8061
(avg.)

8070
(avg.) 100%

F. Putting CLIK-Phases All Together
We evaluate the entire CLIK attack by running it in

autonomous mode. Table III summarizes the evaluation result.
We reuse the 52 control logic program in the dataset for the
evaluation. Each control logic is protected by a unique random
password. After a complete execution of CLIK we reset the
environment before initiating the CLIK attack for the next
control logic. The evaluation results show that CLIK conducts
its four phases (stealing, decompiling, infection, concealing)
for each control logic successfully, as shown in Table III. On
average, CLIK takes less than a minute to complete an attack
cycle and infect a target control logic.

V. COUNTERMEASURES

We suggest countermeasures to CLIK at three levels:
protection, verification, and detection of control logic.
Control logic protection. The effective approaches to prevent
unauthorized access and modifications to control logic are
by improving the isolation of ICS from other networks [30],
compliance with standard security practices [28], [9], and
defense-in-depth security in control systems [6]. Furthermore,
PLC vendors secure their firmware by digital signature or
restricting firmware updates to only USB interface. They can
employ similar approach to control logic. Unfortunately, the
security measures in PLCs largely rely on their obscurity,
which should be replaced with strong security solutions for
authentication, access control, key management, etc.
Control logic verification. A plausible solution is to verify
control-logic before downloading it to a PLC. For instance,
comparing the control logic being transferred with the normal
control logic [39] or applying a model checking technique [43],
[20], [36], [35], [19]. In other words, the control-flow of
control logic running in a PLC can be checked if the execution
of control logic including PLC runtime follows only valid
execution paths [15].
Control logic detection. Perhaps, the most effective approach
is to detect and block the transfer of control logic packets in an
ICS network unless the transfer is explicitly granted. Typically,
it can be achieved by checking the PLC protocol header, which
contains information about the type of payload [30]. Other-
wise, packet payload can be scrutinized to identify control
logic or unauthorized changes in PLC configuration [27].

VI. RELATED WORK

This section presents PLC attacks closely related to CLIK.

McLaughlin [32] proposes a malware model that discovers
plant devices through the fieldbus protocols [3], infers the
properties of the target physical process (e.g., safety inter-
locking and plant structure) and generates malicious control-
logic. McLaughlin and McDaniel [33] further present SABOT
as a proof-of-concept tool in the same direction. SABOT infers
the configuration of the mapping between PLC’s input/output
variables and connected physical devices. It uses a process
specification technique to describe the behavior of a target
physical process and a model checking technique [22] to find
the PLC variables to device mapping. These approaches are
limited to malicious logic generation and are complementary
to CLIK. They can be integrated in the phase 3 of CLIK rule-
based malicious logic generation for improved performance.
Furthermore, unlike CLIK these approaches are never evalu-
ated on real hardware/software used in industrial settings.

Stuxnet [24], one of the most notorious malware in history,
represents a best case for a real-world control logic attack on
PLCs. Stuxnet contains four zero-day vulnerabilities of MS
Windows and two stolen digital certificates. It infects control
logic in target PLCs (Siemens S7-300) by compromising
engineering software (Siemens SIMATIC STEP 7). Further-
more, the malicious control logic was precompiled in Stuxnet
payload. It is widely assumed that the authors of Stuxnet
have been sponsored by nation-states and was cooperated by
insiders to get the knowledge of target PLC configurations
and semantics of underlying physical processes to facilitate
the generation of malicious payload. On the other hand, CLIK
does not rely on precompiled malicious payload and employs
rule-based approach to make malicious modifications in a
benign control logic.

Senthivel et al. [40] present three control logic attack
scenarios referred to as denial of engineering operations (DEO)
attack where an attacker interferes with the normal operation
of downloading/uploading of PLC control logic leading to
compromise the situational awareness of an operator in control
center. In DEO I, the attacker deceives the engineering soft-
ware when it tries to retrieve the control logic from a PLC. It
intercepts the network traffic and removing the infection from
the control logic. DEO II is similar to DEO I except that it
modifies a legitimate control instruction with junk data such
as 0xFFFF, which can crash engineering software. DEO III
does not require intercepting the traffic and mostly installs a
malformed specially-crafted control logic in a PLC. When the
engineering software attempts to acquire the control logic from
the PLC, it cannot process the logic causing it to crash. The
CLIK on contrary ensures continuity of engineering operations
via virtual PLC and does not crash engineering software.

PLC rootkits [14], [25] attack a PLC by compromising
its firmware or runtime rather than infecting a control logic.
Since they reside below the control logic of a PLC, engineering
software is not aware of them. However, unlike CLIK, the
rootkits have several limitations. They require a root access
to a target PLC, remote code execution vulnerability [14],
(malicious) firmware update capability, or physical access to
the hardware interfaces in PLCs such as JTAG [25].

VII. CONCLUSION
We presented CLIK, a new type of autonomous attack on

the control logic of a PLC in industrial control systems to
disrupt a physical process controlled by the PLC. CLIK as a
full attack-chain was implemented and evaluated on a real PLC

10

(Schneider Electric Modicon M221) and engineering software
(SoMachine-Basic). The implementation of the CLIK included
exploiting a zero-day vulnerability to subvert a password
authentication used in the PLC, a decompiler Eupheus to
transform binary control logic into its corresponding IL source
code, and a virtual PLC to engage the SoMachine-Basic
using the acquired network traffic of normal control logic.
CLIK utilized a rule-based approach for automated malicious
modification of the source code. The evaluation results of
CLIK on 52 control logic program showed that CLIK can
work on different logic programs successfully.

REFERENCES

[1] “MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b,”
Modbus Organization, Specification, 2006.

[2] “IEC 61131-3 Ed. 3.0 b:2013, Programmable controllers:Programming
languages,” International Electrotechnical Commission, Standard, 2013.

[3] “IEC 61158-1:2014 Industrial communication networks - Fieldbus spec-
ifications: Overview and guidance for the IEC 61158 and IEC 61784
series,” International Electrotechnical Commission, Standard, 2014.

[4] “Twido controller phase out - Schneider Electric recommends Modicon
M221,” https://www.rs-online.com/designspark/twido-controller-phase-
out-schneider-electric-recommends-modicon-m221, 2015, [Online; ac-
cessed 03-June-2018].

[5] “Cyber-attack against ukrainian critical infrastructure,” https://ics-
cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01, 2016.

[6] “Recommended practice: Improving industrial control system cyber-
security with defense-in-depth strategies,” Department of Homeland
Security, Tech. Rep., 2016.

[7] “CRASHOVERRIDE Malware,” https://ics-cert.us-cert.gov/alerts/ICS-
ALERT-17-206-01, 2017.

[8] “Advisory (ICSA-18-240-01)-Modicon M221,” https://ics-cert.us-
cert.gov/advisories/ICSA-18-240-01, 2018, online accessed Feb-2019.

[9] “Framework for improving critical infrastructure cybersecurity version
1.1,” National Institute of Standards and Technology, Tech. Rep., 2018.

[10] “GNU Diffutils,” https://www.gnu.org/software/diffutils/, 2018, [Online;
accessed 28-Mar-2018].

[11] “Netfilter,” https://netfilter.org/, 2018, [Online; accessed 28-Mar-2018].
[12] “Strong Random Password Generator,” https://passwordsgenerator.net/,

2018, [Online; accessed 28-Mar-2018].
[13] “CLIK gitlab repo,” https://gitlab.com/hyunguk/clik , 2019, [Online;

accessed Feb-2019].
[14] A. Abbasi and M. Hashemi, “Ghost in the plc designing an undetectable

programmable logic controller rootkit via pin control attack,” Black Hat
Europe, pp. 1–35, 2016.

[15] A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “Ecfi: Asynchronous
control flow integrity for programmable logic controllers,” in Proceed-
ings of the 33rd Annual Computer Security Applications Conference,
ser. ACSAC, 2017.

[16] I. Ahmed, S. Obermeier, M. Naedele, and G. G. R. III, “SCADA
systems: Challenges for forensic investigators,” Computer, vol. 45,
no. 12, pp. 44–51, Dec 2012.

[17] I. Ahmed, S. Obermeier, S. Sudhakaran, and V. Roussev, “Pro-
grammable logic controller forensics,” IEEE Security Privacy, vol. 15,
no. 6, pp. 18–24, November 2017.

[18] I. Ahmed, V. Roussev, W. Johnson, S. Senthivel, and S. Sudhakaran,
“A scada system testbed for cybersecurity and forensic research and
pedagogy,” in Proceedings of the 2Nd Annual Industrial Control System
Security Workshop, ser. ICSS, 2016, pp. 1–9.

[19] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade. plc: A verification
platform for programmable logic controllers,” in Proceedings of the
27th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). ACM, 2012, pp. 338–341.

[20] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the automatic verification of plc programs written in instruc-
tion list,” in Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, vol. 4. IEEE, 2000, pp. 2449–2454.

[21] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the
security of control systems,” in Proceedings of the 3rd Conference on
Hot Topics in Security, ser. HotSec, 2008, pp. 6:1–6:6.

[22] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[23] D. Dzung, M. Naedele, T. P. Von Hoff, and M. Crevatin, “Security for
industrial communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1152–1177, 2005.

[24] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[25] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed,
and S. A. Zonouz, “Hey, my malware knows physics! attacking plcs
with physical model aware rootkit,” in 24th Network and Distributed
System Security Symposium (NDSS), 2017.

[26] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On ladder logic
bombs in industrial control systems,” in Computer Security, S. K.
Katsikas, F. Cuppens, N. Cuppens, C. Lambrinoudakis, C. Kalloniatis,
J. Mylopoulos, A. Antón, and S. Gritzalis, Eds. Cham: Springer
International Publishing, 2018, pp. 110–126.

[27] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel, “Through
the eye of the plc: semantic security monitoring for industrial pro-
cesses,” in Proceedings of the 30th Annual Computer Security Applica-
tions Conference (ACSAC). ACM, 2014, pp. 126–135.

[28] R. Halbgewachs, “Control systems security standards,” Sandia National
Laboratories, Tech. Rep., 2009.

[29] ICS-CERT, “ICS Focused Malware,” https://ics-cert.us-
cert.gov/advisories/ICSA-14-178-01, 2014.

[30] M. A. A. H. Keith Stouffer, Victoria Pillitteri, “Guide to industrial
control systems (ics) security,” NIST special publication, 2015.

[31] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Internet-
facing plcs-a new back orifice,” Blackhat USA, 2015.

[32] S. McLaughlin, “On dynamic malware payloads aimed at programmable
logic controllers,” in Proceedings of the 6th USENIX Conference on Hot
Topics in Security, ser. HotSec, 2011, pp. 10–10.

[33] S. McLaughlin and P. McDaniel, “Sabot: specification-based payload
generation for programmable logic controllers,” in Proceedings of the
2012 ACM conference on Computer and communications security
(CCS). ACM, 2012, pp. 439–449.

[34] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel,
“A trusted safety verifier for process controller code.” in Network and
Distributed System Security Symposium (NDSS), vol. 14, 2014.

[35] O. Pavlovic and H.-D. Ehrich, “Model checking plc software written in
function block diagram,” in Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, ser. ICST.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 439–448.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2010.10

[36] O. Pavlovic, R. Pinger, and M. Kollmann, “Automated formal veri-
fication of plc programs written in il,” in Conference on Automated
Deduction (CADE), 2007, pp. 152–163.

[37] RX Family User’s Manual:Software, Renesas Electronics, 2013.
[38] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy

challenges in industrial internet of things,” in Proceedings of the 52nd
annual design automation conference (DAC). ACM, 2015, p. 54.

[39] S. Senthivel, I. Ahmed, and V. Roussev, “SCADA network forensics of
the PCCC protocol,” Digital Investigation, vol. 22, pp. S57–S65, 2017.

[40] S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V. Roussev, “Denial
of engineering operations attacks in industrial control systems,” in
Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, ser. CODASPY, 2018, pp. 319–329.

[41] R. Spenneberg, M. Brüggemann, and H. Schwartke, “Plc-blaster: A
worm living solely in the plc,” Black Hat Asia, 2016.

[42] H. Yoo and I. Ahmed, “Control logic injection attacks on industrial con-
trol systems,” in Proceedings of the 34th IFIP International Conference
on Information Security and Privacy Protection, 2019.

[43] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
2014.

11

APPENDIX A
APPENDIX

.

TABLE IV: The results of the password reset attack

Total
block

size(KB)

of
project

files

Max size
zipHash
(bytes)

Lowest addr.
of code block

(hex)

Avg.
of
write

Avg.
time
(sec)

Attack
success

rate

6 ∼ 7 5 831 0xe088 3325 13.48 100%

7 ∼ 8 19 1712 0xe08c 2943 11.89 100%

8 ∼ 9 25 2261 0xe08c 2034 8.21 100%

>9 3 3103 0xe26c 1468 5.89 100%

Total 52 3103 0xe088 2458 9.93 100%

12

