
Poster: Dissecting the Cryptographic Code
Exchange

Jason Ly
The University of Adelaide

Australia

Minhui Xue
The University of Adelaide

Australia

Abstract—Code exchanges are the common choice of software
documentation of developers regardless of their experience. These
places form communities of programmers and professionals that
exchange and offer solutions to a user’s problems. This acts as a
valuable resource to anyone seeking quick and practical solutions
to any of their code related problems. However, with higher
usability, users tend to sacrifice security. The copy and paste
culture surrounding code exchanges has caused developers to
implement potentially insecure code which may lead to security
breaches in their applications. Due to its popularity, it is essential
that this problem is minimised through a simplification of the
code retrieval process to mitigate poor choices in code searching.
This solution is presented via a system based off the ‘nudge
theory’.

I. INTRODUCTION

Programmers of all levels have the tendency to rely on the
work of others. Reuse of components and in-built libraries
are several examples of the reliance and inactivity that takes
place towards software development [2]. This, however, is
not necessarily a negative trait as code-reuse is an important
culture that supports lower development times and improves
functionality [3]. In turn, it is understandable why communi-
ties such as Stack Overflow act as an essential tool through
their example driven solutions. This access to a knowledge rich
platform supported by a strong community forms an enticing
resource for inexperienced to professional developers alike. It
increases the functionality of software by reducing the effort
of implementation which is ideal in all levels of software
development.

However, when dealing with complex concepts such as
cryptography, it is observed that its benefits may not counter
weigh its potential risks. Specifically, the risks that arise from
the implementation of insecure code into real-world applica-
tions are investigated. On one hand, a developer will likely
reap the benefits of Stack Overflow’s technical solutions [2].
On the other, they increase the likelihood of introducing the
potential for malicious attacks. Oftentimes Stack Overflow
users cannot rely on its community to properly identify
vulnerabilities in solutions due to the specialised nature of
cryptography [4]. This leads to shortcomings in the reliability
of the mentioned examples and the overuse of compromised
solutions in streamline applications. The repercussions of such
dangers in working applications form the catalyst for the
implementation of a deep learning nudge system.

To solve this, we approach the problem via supervised
deep learning systems, which are superior in comparison to
rule based filtration. This systems aims to make predictions
through the analysis of user submitted code snippets to these
code exchanges. However, rather than traditional networks, we
use a Long short term memory (LSTM) network to predict
security. The introduction of memory via its interaction gates
adds a level of understanding to the system, to allow for more
dynamic predictions. This method aids in accounting for the
huge variance in potential input, due to the uniquely large and
non-numerical inputs.

II. IMPLEMENTATIONS

For the implementation of our LSTM network, we utilise
Python as the chosen language, attributing this choice to its
extensive data manipulation libraries. To create a baseline for
the network, we would first need to build a standard neural net-
work, in our situation of ‘shallow’ depth, since LSTMs do not
require many hidden layers. This is due to their introduction
of the control gates, cell states and their weightings, meaning
we do not require the network to be large as these interactions
will introduce memory to the network through encoded states.
Our forget gate, will help the network decide what features
it forget based on the new input. The input and output gates
dictate what information will be encoded into our new cell
state and passed forward to the next layer. The cell state is a
single vector that holds previously encoded data of features
or patterns that have been ‘remembered’ by our network.
These additional interactions throughout the network allow
more control over the gradients, and prevents the vanishing
gradient problem [1].

For the network to successfully predict a program’s security,
we must first have an appropriate data set that can be fed
in as input. The task of converting an entire code program
into a binary vector, while maintaining its crucial features to
reflect the same program is extremely difficult. We generally
need complete programs/source code, however stack overflow
includes many incomplete systems. Hence, we need a Partial
Program Analysis (PPA) tool. PPA was built specifically to
be able to parse incomplete code to build abstract syntax
trees (AST), which are the first intermediate form needed.
The function of being able to parse programs independent
from the completeness of the code allows for small code
snippets to be analyzed and labelled. From here, we will have

Fig. 1: Example of LSTM network, with added cell state input
and outputs, and interaction gates.

our AST, where using a related tool e.g. Node2Vec. We can
traverse our tree and build a one-hot binary vector. This form
of data can then be fed into our network and be mathematically
manipulated for analysis.

In terms of labelling, systems would be dedicated as secure
or insecure based on their similarity to other secure or insecure
programs. These would be attributed to similarities in their
use-case patterns produced in the PDG, in other words if
a program shares similar programming practices to a pre-
determined secure program, we can deduce that new program
is also secure.

A. Programs were labelled based on:

• Systems containing updated and strong, mainstream al-
gorithms for symmetric cryptography.

• Systems containing obviously insecure code, e.g. using
outdated, weak algorithms or static initialization vectors
and keys for symmetric cryptography.

• Systems that contain code whose security required addi-
tional developer input.

Because of this, it is essential we properly teach the network
with an extensive training set over many iterations. This gives
the network the opportunity to build a strong baseline for its
predictions, and gives room to learn dynamically based on
successful predictions to become an unsupervised model.

III. RESULTS

In our test setup, we ran our network over the training
data set, feeding each transformed code snippet as input. After
each iteration, the network would decide what key features of
‘strong’ cryptographic code would be encoded into its ‘input
gate’ vector to be passed to the next iteration.

The network’s final performance, over a 20000 iteration exe-
cution resulted in a final training accuracy of 99.04%. This was
run with a pre-labeled data set provided by Fischer et al. [1] of
a stack overflow code dump, where code snippets were filtered
if they held keywords relating to cryptography. This dataset
was manually labeled by security experts and laid a strong

Fig. 2: Cost vs. Iterations (per hundreds)

baseline for the training of our network. Expanding on this,
over the run time, our network’s cost undergoes a downward
trend finishing at 0.005, that is to say, as our network iterates,
its probability of predicting correctly increases, thus proving
functionality.

IV. CONCLUSION

A deep learning-based system, that utilises both neural
networks, and the concept of memory, is a quintessential tool
in making up for the short-comings in the standard “rule-
based filtration” approach. Its ability to learn and predict a
code’s safety based on its usage patterns means quick analyse
times. By investigating the process of its recommendations to
stronger cryptography, we can understand the system and seek
to make improvements and tweaks to improve many output
factors such as analyse times or prediction accuracy.

ACKNOWLEDGMENTS

This work was supported in part by the Australian Research
Council (ARC) Discovery Project (DP210102670) and the
Adelaide Summer Research Scholarship.

REFERENCES

[1] F. Fischer, H. Xiao, C.-Y. Kao, Y. Stachelscheid, B. John-
son, D. Razar, P. Fawkesley, N. Buckley, K. Böttinger,
P. Muntean, et al. Stack overflow considered helpful! Deep
learning security nudges towards stronger cryptography. In
28th {USENIX} Security Symposium ({USENIX} Security
19), 2019.

[2] M. Sojer and J. Henkel. Code reuse in open source
software development: Quantitative evidence, drivers, and
impediments. Journal of the Association for Information
Systems, 2010.

[3] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow
and GitHub: Associations between software development
and crowdsourced knowledge. In International Conference
on Social Computing. IEEE, 2013.

[4] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get
off of my market: Detecting malicious apps in official and
alternative Android markets. In NDSS, 2012.

Poster: Dissecting the Cryptographic Code Exchange

Introduction
Oftentimes Stack Overflow users cannot rely on its community to

properly identify vulnerabilities in solutions due to the specialized
nature of cryptography. Because of this, we propose an inte-
grated learning system onto a code exchange such as stack

overflow. Our network aims to learn key features of strong cryp-
tography and predict their security based off its components.

Jason Ly
The University of Adelaide

Australia

Key takeaways

• Properly safe guarding code exchanges is essential to beginners

and professionals alike.

• Identifying the specific shortcomings in code snippets opens way

for a huge amount of variance.

• It is essential we aim for dynamic learning compared to rule-

We define our state (ST) at time (T) , as

our additional input. We can view it as a

function of the previous state (St-1) at time

T-1 and current input X and time T.

Minhui Xue
The University of Adelaide

Australia

Exploded view

Chaining of multi

neural networks in

multi-layer model

Single network with added

interaction gates

Proof of concept
Successful training of RNN to recognize and

predict program accuracy with a 99.04%

prediction rate

Motivations

• Programmers have the tendency to confide in the work

of others through the reuse of proven and tested imple-
mentations.

• Code exchanges such as Stack Overflow do not have
enough security experts to properly verify most cryptog-
raphy-based solutions

• Attempts to guide users are observed to be more effec-

tive when their choices can be influenced rather than
restrict their access.

References
[1] Prole, K. (2018). ‘Code reuse: How to reap the benefits and
avoid the dangers.’ [online] Code Dx, Available at: https://
codedx.com/blog/code-reuse-how-to-reap-the-benefits-and-avoid-
the-dangers/

[2] Fischer F, Xiao H, Kai C, Stachelscheid Y, ‘Stack Overflow
Considered Helpful! Deep Learning Security Nudges Towards
Stronger Cryptography.’ Security Symposium (USENIX Security
2019)

[3] Bogdan V, Vladimir F, Alexander S, ‘StackOverflow and
GitHub: Associations Between Software Development and
Crowdsourced Knowledge.’ Socialcom 2013

[4] James, A. (2019). Java SE | Oracle Technology Network | Ora-
cle. [online] Oracle.com. Available at: http://www.oracle.com/
technetwork/java/javase/

Code snippet Abstract Syntax Tree Binary Vector

Data Conversions

To train our network on code snip-
pets, we must undergo some form of
data conversion to feed them into our

network.

Converting entire code programs into
binary vectors, while maintaining the

crucial, defining features is extremely
difficult. To solve this, we utilize a
multi-step transformation method. As
shown:

Data labelling

• Systems containing a combination of updated and strong,

mainstream algorithms for symmetric cryptography (AES,
CBC,).

• Systems containing obviously insecure code, e.g. using
outdated, weak algorithms or static initialization vectors
and keys for symmetric cryptography (DES, ECB, SHA-1).

• Systems that contain code whose security required addi-

tional developer input.

