
Reflections
on Artifact Evaluation

Eric Eide
University of Utah



Artifact evaluation

2

do
i>

 1
0.

11
45

/2
65

89
87



Artifact evaluation

2

do
i>

 1
0.

11
45

/2
65

89
87

“Our goal is to get to the point where any 
published idea that has been evaluated, 
measured, or benchmarked is accompanied 
by the artifact that embodies it. Just as 
formal results are increasingly expected to 
come with mechanized proofs, empirical 
results should come with code.”



Why did we choose that goal?



Why reproduce?

do
i>

 1
0.

11
45

/1
50

82
44

.1
50

82
75

4



Why reproduce?

do
i>

 1
0.

11
45

/1
50

82
44

.1
50

82
75

“This paper presents a surprising result: changing 
a seemingly innocuous aspect of an experimental 
setup can cause a systems researcher to draw 
wrong conclusions from an experiment. What 
appears to be an innocuous aspect in the 
experimental setup may in fact introduce a 
significant bias in an evaluation.”

4



Myktowicz et al.

• is –O3 optimization 
beneficial over –O2?

• compile and run SPEC 
2006 benchmarks
– vary size of environment
– vary link order

• result: performance of 
benchmarks varied widely

5

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

0.90

0.95

1.00

1.05

1.10

bytes added to empty environment

cy
cl

e
s(

O
2

) 
/ 

cy
cl

e
s(

O
3

)

(a) Perlbench

0.90

0.95

1.00

1.05

1.10

g
cc

lib
q
u
a
n
tu

m

p
e
rl
b
e
n
ch

b
zi

p
2

h
2
6
4
re

f

m
cf

g
o
b
m

k

h
m

m
e
r

sj
e
n
g

sp
h
in

x

m
ilc

lb
m

!
!

!
!

!
!

! !

!

!

!

!

cy
cl

e
s 

(O
2
) 

/ 
cy

cl
e
s 

(O
3
)

(b) All Benchmarks

Figure 3. The effect of UNIX environment size on the
speedup of O3 on Core 2.

the 95% confidence intervals around the mean. The tight
confidence intervals mean that these points are not anomalies
but true reproducible behavior.

The most important point to take away from this graph
is that depending on the shell environment size we may
conclude that (i) the O3 optimizations are beneficial (i.e., the
y value is greater than 1.0); (ii) the O3 optimizations degrade
performance; and (iii) increasing the UNIX environment
size does not predict the O3 speedup because as the size
increases speedup increases and decreases, ranging from
0.91 to 1.07.

Figure 3 (b) summarizes similar data across all bench-
marks. Each violin plot gives the data for one benchmark
and plots all the points for the benchmark (each point corre-
sponds to a particular UNIX environment size).

In Figure 3 (b), we see that four of the violins (libquantum,
perlbench, sphinx and lbm) straddle 1.0: this means that de-
pending on the experimental setup, one can end up with
contradictory conclusions about the speedup of O3. On the
Pentium 4, our results are more dramatic: the violins of six

of the 9 CINT benchmarks straddle 1.0.
The perlbench violin summarizes Figure 3 (a). The differ-

ence between the maximum and minimum points of a violin

are particularly instructive because they give an indication of
the range of bias one can end up with. The most extreme is
lbm which ranges from 0.88 (i.e., a significant slowdown due
to O3 optimizations) to 1.09 (i.e., a healthy O3 speedup).
The median difference between the extreme points on the
Core 2 is 0.01 and on the Pentium 4 is 0.04. Thus, while
smaller than measurement bias due to link order, the mea-
surement bias due to UNIX environment size is still large
enough (on average 1% for Core 2 and 4% for Pentium 4) to
obfuscate experimental results.

To summarize, measurement bias due to UNIX environ-
ment size can severely impact the results of our experiment—
both in the magnitude of any effect we are measuring and
even forcing a researcher to draw an incorrect conclusion.
Using lbm as an example we may think we have a 12%
slowdown when in fact we have a 9% speedup!

4.2.2 The potential causes of the measurement bias

What causes the measurement bias due to environment vari-
ables on the Core 2? So far we have uncovered two high-
level reasons.

The first reason is that the UNIX environment size af-
fects the starting address of the C stack. Thus, by changing
the UNIX environment size, we are effectively changing the
address and thus the alignment of stack variables in various
hardware buffers; also many algorithms in hardware (e.g., to
detect conflicts between loads and stores) depend on align-
ments of code or data. We verified our explanation by always
starting the stack at the same location while changing the
UNIX environment size; we got the same O3 speedup (for
all benchmarks except perlbench) with different UNIX envi-
ronment sizes, thus confirming that it was the stack starting
location that affected O3 speedup.

The second reason (which applies only to perlbench) is
that when perlbench starts up, it copies contents of the UNIX
environment to the heap. Thus, using different UNIX en-
vironment sizes effectively changes the alignment of heap-
allocated structures in various hardware buffers in addition
to the alignment of stack allocated variables. We confirmed
this explanation by always fixing the start address of the heap
so that all of our different UNIX environments would fit be-
low it. With these experimental setups, we found that dif-
ferent UNIX environment sizes had a much smaller impact
on the speedup of O3. The first reason described above (i.e.,
UNIX environment size affects stack start address) causes
the residual bias.

While the above two reasons provide a high-level causal
analysis, we would like to understand the underlying causes
in more detail. In particular we would like to know which

hardware structure interacted poorly with which stack vari-

ables. For this study we intervened on the code of perlbench
and fixed the heap start address so as to focus entirely on
the effects due to shifting the stack address. We picked the
two UNIX environment sizes that lead to the fastest and the
slowest execution time. For both of these UNIX environ-

Figure credit: Myktowicz et al.,
doi> 10.1145/1508244.1508275



Myktowicz et al.

• is –O3 optimization 
beneficial over –O2?

• compile and run SPEC 
2006 benchmarks
– vary size of environment
– vary link order

• result: performance of 
benchmarks varied widely

5

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

0.90

0.95

1.00

1.05

1.10

bytes added to empty environment

cy
cl

e
s(

O
2

) 
/ 

cy
cl

e
s(

O
3

)

(a) Perlbench

0.90

0.95

1.00

1.05

1.10

g
cc

lib
q
u
a
n
tu

m

p
e
rl
b
e
n
ch

b
zi

p
2

h
2
6
4
re

f

m
cf

g
o
b
m

k

h
m

m
e
r

sj
e
n
g

sp
h
in

x

m
ilc

lb
m

!
!

!
!

!
!

! !

!

!

!

!

cy
cl

e
s 

(O
2
) 

/ 
cy

cl
e
s 

(O
3
)

(b) All Benchmarks

Figure 3. The effect of UNIX environment size on the
speedup of O3 on Core 2.

the 95% confidence intervals around the mean. The tight
confidence intervals mean that these points are not anomalies
but true reproducible behavior.

The most important point to take away from this graph
is that depending on the shell environment size we may
conclude that (i) the O3 optimizations are beneficial (i.e., the
y value is greater than 1.0); (ii) the O3 optimizations degrade
performance; and (iii) increasing the UNIX environment
size does not predict the O3 speedup because as the size
increases speedup increases and decreases, ranging from
0.91 to 1.07.

Figure 3 (b) summarizes similar data across all bench-
marks. Each violin plot gives the data for one benchmark
and plots all the points for the benchmark (each point corre-
sponds to a particular UNIX environment size).

In Figure 3 (b), we see that four of the violins (libquantum,
perlbench, sphinx and lbm) straddle 1.0: this means that de-
pending on the experimental setup, one can end up with
contradictory conclusions about the speedup of O3. On the
Pentium 4, our results are more dramatic: the violins of six

of the 9 CINT benchmarks straddle 1.0.
The perlbench violin summarizes Figure 3 (a). The differ-

ence between the maximum and minimum points of a violin

are particularly instructive because they give an indication of
the range of bias one can end up with. The most extreme is
lbm which ranges from 0.88 (i.e., a significant slowdown due
to O3 optimizations) to 1.09 (i.e., a healthy O3 speedup).
The median difference between the extreme points on the
Core 2 is 0.01 and on the Pentium 4 is 0.04. Thus, while
smaller than measurement bias due to link order, the mea-
surement bias due to UNIX environment size is still large
enough (on average 1% for Core 2 and 4% for Pentium 4) to
obfuscate experimental results.

To summarize, measurement bias due to UNIX environ-
ment size can severely impact the results of our experiment—
both in the magnitude of any effect we are measuring and
even forcing a researcher to draw an incorrect conclusion.
Using lbm as an example we may think we have a 12%
slowdown when in fact we have a 9% speedup!

4.2.2 The potential causes of the measurement bias

What causes the measurement bias due to environment vari-
ables on the Core 2? So far we have uncovered two high-
level reasons.

The first reason is that the UNIX environment size af-
fects the starting address of the C stack. Thus, by changing
the UNIX environment size, we are effectively changing the
address and thus the alignment of stack variables in various
hardware buffers; also many algorithms in hardware (e.g., to
detect conflicts between loads and stores) depend on align-
ments of code or data. We verified our explanation by always
starting the stack at the same location while changing the
UNIX environment size; we got the same O3 speedup (for
all benchmarks except perlbench) with different UNIX envi-
ronment sizes, thus confirming that it was the stack starting
location that affected O3 speedup.

The second reason (which applies only to perlbench) is
that when perlbench starts up, it copies contents of the UNIX
environment to the heap. Thus, using different UNIX en-
vironment sizes effectively changes the alignment of heap-
allocated structures in various hardware buffers in addition
to the alignment of stack allocated variables. We confirmed
this explanation by always fixing the start address of the heap
so that all of our different UNIX environments would fit be-
low it. With these experimental setups, we found that dif-
ferent UNIX environment sizes had a much smaller impact
on the speedup of O3. The first reason described above (i.e.,
UNIX environment size affects stack start address) causes
the residual bias.

While the above two reasons provide a high-level causal
analysis, we would like to understand the underlying causes
in more detail. In particular we would like to know which

hardware structure interacted poorly with which stack vari-

ables. For this study we intervened on the code of perlbench
and fixed the heap start address so as to focus entirely on
the effects due to shifting the stack address. We picked the
two UNIX environment sizes that lead to the fastest and the
slowest execution time. For both of these UNIX environ-

Figure credit: Myktowicz et al.,
doi> 10.1145/1508244.1508275

“Measurement bias is significant 
because it can easily mislead a 
performance analyst into 
believing that one configuration 
is better than another whereas if 
the performance analyst had 
conducted the experiments in a 
slightly different experimental 
setup she would have concluded 
the exact opposite.”



Improving CS research

do
i>

 1
0.

11
45

/2
44

27
76

.2
44

27
81

6



Improving CS research

do
i>

 1
0.

11
45

/2
44

27
76

.2
44

27
81

“Important results in systems research 
should be repeatable, they should be 
reproduced, and their evaluation should 
be carried with adequate rigor. Instead, 
the symptoms of the current state of 
practice include the following quartet:
Unrepeatable results,
Unreproduced results,
Measuring the wrong thing,
Meaninglessly measuring the right thing.”

6



Vitek and Kalibera

“Deadly Sins”
• unclear goals
• implicit assumptions
• proprietary data
• weak statistics
• meaningless measurements
• no baseline
• unrepresentative workloads

Recommendations
• develop open-source 

benchmarks
• codify best-practice 

documentation, 
methodologies, and 
reporting standards

• require repeatability of 
published results

• encourage reproduction 
studies

7



Reexamining previous results

do
i>

 1
0.

11
45

/2
88

47
81

.2
88

48
35

8



Reexamining previous results

do
i>

 1
0.

11
45

/2
88

47
81

.2
88

48
35

“We briefly describe six improvements we made 
to KLEE… Given these improvements, we then 
investigate how the results and conclusions of a 
sample of papers that cite KLEE are affected. Our 
findings indicate that the strong emphasis on 
introducing ‘new’ techniques may lead to…
questionable research conclusions (in our study, 
27% of the papers that depend on KLEE can be 
questioned).”

8



Rizzi et al.
“Of the 25 papers whose results could be affected 
by our KLEE improvements, our analysis identified 
11... that required a deeper examination because 
we deemed that their conclusions could be 
significantly affected. This deeper examination 
consisted not just in analyzing the papers in more 
detail, but also attempting to replicate studies. In 
spite of our efforts, we were able to replicate the 
studies in only two of these papers.”

9(Emphasis mine.)



Rizzi et al.
“Of the 25 papers whose results could be affected 
by our KLEE improvements, our analysis identified 
11... that required a deeper examination because 
we deemed that their conclusions could be 
significantly affected. This deeper examination 
consisted not just in analyzing the papers in more 
detail, but also attempting to replicate studies. In 
spite of our efforts, we were able to replicate the 
studies in only two of these papers.”

“We were able to replicate HMP-19 which contained 
a reference to an online-repository, with all of the 
necessary code and data. The other paper we were 
eventually able to replicate with the authors’ 
assistance was IA-20, although as we shall see even 
in this instance the result of the replication did not 
quite match those in the paper.”

9(Emphasis mine.)



Rizzi et al.
“Of the 25 papers whose results could be affected 
by our KLEE improvements, our analysis identified 
11... that required a deeper examination because 
we deemed that their conclusions could be 
significantly affected. This deeper examination 
consisted not just in analyzing the papers in more 
detail, but also attempting to replicate studies. In 
spite of our efforts, we were able to replicate the 
studies in only two of these papers.”

“We were able to replicate HMP-19 which contained 
a reference to an online-repository, with all of the 
necessary code and data. The other paper we were 
eventually able to replicate with the authors’ 
assistance was IA-20, although as we shall see even 
in this instance the result of the replication did not 
quite match those in the paper.”

“We did not receive a response for two papers, 
while for the remainder we were informed that 
pending patents, work with industrial bodies, or 
unrecoverable code and data prevented the 
authors from being able to help us replicate their 
experiments.”

9(Emphasis mine.)



Surveying a field

10

do
i>

 1
0.

11
45

/2
99

63
58



Surveying a field

10

do
i>

 1
0.

11
45

/2
99

63
58



Improving the situation:
Artifact evaluation



Artifact evaluation: why? how?
• recognize authors who create useful artifacts
• improve papers through artifact availability & review
• a first step toward repeatability as a review criterion

• authors of accepted papers invited to submit artifacts
– due shortly after paper acceptance

• artifacts reviewed by a separate
Artifact Evaluation Committee

• “Does the artifact meet the
expectations set by its paper?”

12
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C



52 58

20

33

12

27

PLDI '14 PLDI '15
Papers Artifacts Submitted Artifacts Accepted

38%
60%

56%

82%



14ht
tp

s:
//

po
pl

18
.s

ig
pl

an
.o

rg
/t

ra
ck

/P
O

PL
-2

01
8-

Ar
tif

ac
t-E

va
lu

at
io

n



14ht
tp

s:
//

po
pl

18
.s

ig
pl

an
.o

rg
/t

ra
ck

/P
O

PL
-2

01
8-

Ar
tif

ac
t-E

va
lu

at
io

n



15



ACM: Result & artifact badging

16

do
i>

 1
0.

11
45

/2
99

40
31



ACM: Result & artifact badging

16

do
i>

 1
0.

11
45

/2
99

40
31

“This policy is but the first deliverable of the 
ACM Task Force on Data, Software and 
Reproducibility. Ongoing efforts are aimed 
at surfacing software and data as first-class 
objects in the DL, so it can serve as both a 
host and a catalog for not just articles, but 
the full range of research artifacts deserving 
preservation.”



ACM badges
• Artifacts Evaluated—

Functional
– documented, consistent, 

complete, exercisable

• Artifacts Evaluated—Reusable
– functional, plus
– reuse and repurposing is 

facilitated

• Artifacts Available
– placed on a publicly accessible 

archival repository

• Results Reproduced
– main results have been 

obtained in a subsequent study 
by someone other than the 
authors, using artifacts 
provided by the author

• Results Replicated
– main results have been 

independently obtained in a 
subsequent study by someone 
other than the authors, 
without author-supplied 
artifacts

• may be awarded post-
publication

17https://www.acm.org/publications/policies/artifact-review-and-badging-current



Artifact evaluation is now 
commonplace. Did we win?



Education

19

do
i>

 1
0.

11
45

/3
08

92
62

.3
08

92
66



Education

19

do
i>

 1
0.

11
45

/3
08

92
62

.3
08

92
66

“We have observed that reproducing 
research can simultaneously be a tool for 
education and a means for students to 
contribute to the networking community. 
Through this editorial we describe our 
project in reproducing network research and 
show through anecdotal evidence that this 
project is important for both the classroom 
and the networking community at large…”



20

ht
tp

s:
//

re
pr

od
uc

in
gn

et
w

or
kr

es
ea

rc
h.

w
or

dp
re

ss
.c

om
/



Replicability as a criterion

21ht
tp

s:
//

w
w

w
.ic

se
20

18
.o

rg
/t

ra
ck

/ic
se

-2
01

8-
Te

ch
ni

ca
l-P

ap
er

s



Replicability as a criterion

21

“Research track submissions will be evaluated based 
on the following criteria: …

Replicability: Is there sufficient information in the 
paper for the results to be independently replicated? 
The evaluation of submissions will take into account
the extent to which sufficient information is available 
to support the full or partial independent replication 
of the claimed findings.”

ht
tp

s:
//

w
w

w
.ic

se
20

18
.o

rg
/t

ra
ck

/ic
se

-2
01

8-
Te

ch
ni

ca
l-P

ap
er

s



Reproduction as a requirement

22

ht
tp
s:
//
w
w
w
.js
ys
.o
rg
/c
fp
/#
ar
tif
ac
t-e

va
lu
at
io
n



Reproduction as a requirement

22

ht
tp
s:
//
w
w
w
.js
ys
.o
rg
/c
fp
/#
ar
tif
ac
t-e

va
lu
at
io
n

“JSys submissions for the Solution or Tools/Benchmark 
category must be accompanied by an Artifact. The JSys
Artifact Evaluation Board evaluates whether the 
artifact can be used by a third-party (without author 
involvement), and whether the results in the paper can 
be reproduced using the artifact.”



Calls for reproducibility studies

23

ht
tp
s:
//
co
nf
.re

se
ar
ch
r.o

rg
/t
ra
ck
/is
st
a-
20

18
/is
st
a-
20

18
-T
ec
hn

ic
al
-P
ap
er
s



Calls for reproducibility studies

23

ht
tp
s:
//
co
nf
.re

se
ar
ch
r.o

rg
/t
ra
ck
/is
st
a-
20

18
/is
st
a-
20

18
-T
ec
hn

ic
al
-P
ap
er
s

“A reproducibility study should clearly report on 
results that the authors were able to reproduce as 
well as on aspects of the work that were 
irreproducible. In the latter case, authors are 
encouraged to make an effort to communicate or 
collaborate with the original paper’s authors to 
determine the cause for any observed discrepancies 
and, if possible, address them…”



This paper has badges,
but…



Is it really reusable?

25

do
i>

 1
0.

11
45

/3
40

24
13

.3
40

24
18



Is it really reusable?

25

do
i>

 1
0.

11
45

/3
40

24
13

.3
40

24
18

“We evaluate the NDP artifact beyond the 
Reusable badge’s level, investigating the 
effect of aspects such as packet size and 
random-number seed on throughput and 
flow completion time. Our evaluation 
demonstrates that while the NDP artifact is 
reusable, it is not robust, and we identify 
architectural, implementation and 
evaluation limitations.”



What does a badge really mean?

26

ht
tp
s:
//
sy
sa
rt
ifa
ct
s.
gi
th
ub

.io
/e
ur
os
ys
20

22
/b
ad
ge
s



What does a badge really mean?

26

ht
tp
s:
//
sy
sa
rt
ifa
ct
s.
gi
th
ub

.io
/e
ur
os
ys
20

22
/b
ad
ge
s

“This year, we provide checklists for authors and 
evaluators to help prepare and evaluate artifacts, 
minimizing the risk of an artifact unnecessarily 
missing a badge.”



Difficult-to-evaluate artifacts

27

do
i>

 1
0.

11
45

/3
40

24
13

.3
40

24
18



Difficult-to-evaluate artifacts

27

do
i>

 1
0.

11
45

/3
40

24
13

.3
40

24
18

“…some submissions to these new [artifact 
evaluation] programs do not pass the lowest 
bar, and many submissions are difficult for 
reviewers to simply setup and test.”



Dahlgren: issues encountered

• long-running tests
• not enough resources
• problems with 

documentation
• issues compiling or 

running
• issues with VM or 

container
• ignored errors

• issues with software 
dependencies

• works in limited 
environments

• errors in scripts
• too complicated
• downloads during 

execution

28



Artifact evaluation and 
reproduction: still not so
software environment
hardware environment
availability of artifacts
incentives



Better practices & tools

30

ht
tp
s:
//
w
w
w
.u
se
ni
x.
or
g/
pu

bl
ic
at
io
ns
/lo

gi
n/
w
in
te
r-2

01
6-
vo
l-4

1-
no

-4
/ji
m
en

ez



Better practices & tools

30

ht
tp
s:
//
w
w
w
.u
se
ni
x.
or
g/
pu

bl
ic
at
io
ns
/lo

gi
n/
w
in
te
r-2

01
6-
vo
l-4

1-
no

-4
/ji
m
en

ez

“In this article, we present Popper, a convention 
(or protocol) for conducting experiments 
following a DevOps approach that allows 
researchers to make all associated artifacts 
publicly available with the goal of maximizing 
automation in the re-execution of an experiment 
and validation of its results.”



Popper

31

Figure source: Popper web site,
http://popper.readthedocs.io/en/latest/protocol/intro_to_popper.html



Better evaluation platforms

32

do
i>

 1
0.

11
45

/2
47

98
71

.2
47

98
92



Better evaluation platforms

32

do
i>

 1
0.

11
45

/2
47

98
71

.2
47

98
92“Many aspects of complex performance 

experimentation are automated by DataMill
enabling users to set up performance experiments 
easily. Due to its support for many different 
hardware platforms and automated factor 
variation, DataMill can cover a larger experiment 
space than typically considered by most 
researchers.”



DataMill
• define an experiment 

“package”

• auto execute on various 
hardware platforms…
– x86/ARM, speed, mem size

• …with various software 
factors, e.g.
– compiler flags
– link orders
– ASLR

• …and multiple trials

−O0 −O1 −O2 −O3 −Os

400

600

800

1000

190
210
230
250
270
290

600

800

1000

1000

2000

3000

4000

5000

1000

2000

3000

4000

300

400

500

250

300

350

400

A 1.6G
Hz Nano X2

C 600M
Hz ARM

E 3.2G
Hz P4

F 3.4G
Hz i7

G
 3.3G

Hz i5
I 1.6G

Hz P4
K 1.6G

Hz P4

bzip2 xz bzip2 xz bzip2 xz bzip2 xz bzip2 xz
Compressor

Co
m

p.
 R

at
e 

(k
B/

s)

Figure 5: XZ vs. bzip2, Compression Rate

plotted along an individual line, with 95% confidence inter-
vals shown in light gray behind each curve. The plot shows
a marked and general improvement in performance going
from -O0 to -O1 (as shown in Figure 5), but also reveals a
more interesting point: in two of the machines, there is a
decrease in performance going from -O1 to -O2. Despite be-
ing a small decrease, this may merit more investigation, as
-O2 is the default optimization flag of several distributions.

This performance comparison demonstrates the utility of
DataMill for users interested in evaluating performance: with
just 32 lines of code, 6300 jobs were executed in under a
week, exercising several dimensions that would normally be
ignored, and leading to insight that would be unattainable
through manual, one-factor-at-a-time experimentation.

5.2 Perlbench: Link Order Effect
We now demonstrate the use of DataMill for users in-

terested in the study of computer performance evaluation.
Mytkowitz et al. [21] report that the link order of a binary is
correlated with runtime performance, and that the optimal
link order varies from host to host. This is generally under-
stood to be a consequence of different memory and cache
layouts leading to different cache and page miss ratios. The
authors showed that the performance of Perlbench — part
of SPEC CPU2006 [27] — can vary by more than 8% by
simply modifying the link order.

100000

150000

200000

250000

300000

−O0 −O1 −Os −O2 −O3
Optimization Flag

Ta
sk

 C
lo

ck
 (m

s)

Host
A 1.6GHz Nano X2
C 600MHz ARM
E 3.2GHz P4
F 3.4GHz i7
G 3.3GHz i5
I 1.6GHz P4
K 1.6GHz P4

Figure 6: Effect of GCC Optimization Flags on XZ,
by Host

Factor Mean Sq. p-value

Compressor 1.617e+12 <2e-16
Opt. Flag 1.258e+11 <2e-16

Link Order 7.397e+05 0.5807
Addr. Rand. 2.572e+04 0.8907

Compressor:Opt. Flag 1.883e+11 <2e-16
Compressor:Link Order 1.924e+06 0.2347

Compressor:Addr. Rand. 1.511e+06 0.2922
Opt. Flag:Link Order 1.312e+06 0.4624

Opt. Flag:Addr. Rand. 3.791e+06 0.0257
Link Order:Addr. Rand. 2.738e+05 0.8177

Residuals 1.360e+06

Table 3: Reduced ANOVA Table for XZ Execution
Time on Machine F

Trying to reproduce their results, we created an experi-
ment on DataMill to explore the effect of link order and ad-
dress randomization on Perlbench performance. We encap-
sulated Perlbench and SPEC’s“train”data set in a DataMill
package, with scripts and environment file totaling 33 lines.
Three link orders were explored (default, alphabetical and
reverse alphabetical), with Linux address randomization on
and off. If address randomization is on, one would expect
that the affect of link order would be neutralized, since the
memory layout will be randomized. In other words, the
link order and the address randomization factors should be
highly correlated. We chose a number of 15 replications
of each configuration to calculate dispersion, generating a
total of 630 jobs over 7 machines. The DataMill took ap-
proximately 27 hours to finish the full experiment.

Figures 7 and 8 show results for the different metrics for
this experiment. These facet plots are divided by address
randomization (top header) and host (right header). Each
subplot contains three boxplots, one for each link order ex-

144

33
Figure credit: de Oliveira et al.,
doi> 10.1145/2479871.2479892



Sharing runnable artifacts

34

ht
tp
s:
//
ch
am

el
eo

nc
lo
ud

.re
ad
th
ed

oc
s.
io
/e
n/
la
te
st
/t
ec
hn

ic
al
/s
ha
rin

g.
ht
m
l



Sharing runnable artifacts

34

ht
tp
s:
//
ch
am

el
eo

nc
lo
ud

.re
ad
th
ed

oc
s.
io
/e
n/
la
te
st
/t
ec
hn

ic
al
/s
ha
rin

g.
ht
m
l

“Chameleon Trovi is a sharing portal that allows 
you to share digital research and education 
artifacts, such as packaged experiments, workshop 
tutorials, or class materials.”



Artifact evaluation indexes

35

ht
tp
s:
//
sy
sa
rt
ifa
ct
s.
gi
th
ub

.io
/

ht
tp
s:
//
se
ca
rt
ifa
ct
s.
gi
th
ub

.io
/



Artifact evaluation indexes

35

ht
tp
s:
//
sy
sa
rt
ifa
ct
s.
gi
th
ub

.io
/

ht
tp
s:
//
se
ca
rt
ifa
ct
s.
gi
th
ub

.io
/



Community artifact hubs

36

ht
tp
s:
//
hu

b.
cy
be

re
xp
er
im

en
ta
tio

n.
or
g/



Community artifact hubs

36

ht
tp
s:
//
hu

b.
cy
be

re
xp
er
im

en
ta
tio

n.
or
g/

“SEARCCH builds and maintains a database of 
metadata about research artifacts that are 
housed in different places on the internet. It 
lowers the barrier for sharing these artifacts 
through automated submission assistant tools… 
SEARCCH also facilitates a community around 
these artifacts.”



Summary

• artifact evaluation has 
changed our practices 
and expectations

• slowly moving toward 
“standard” practices…

• …but many issues still 
to be addressed

37

Eric Eide
www.cs.utah.edu/~eeide/
email: eeide@cs.utah.edu
Twitter: @eeide


