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Roadmap

• Introduction
• What are prototype pollution and its consequences?
• How do we detect them? What is the System design? 

• Implementation 
• Evaluation  
• Discussion 
• Wrap-up
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Introduction

• What is Prototype Pollution?
• A relatively-new JavaScript vulnerability type discovered in 2018
• Polluting a base object’s property, e.g., Object.prototype.toString

• Related Work
• [ESEC/FSE’21], [USENIX’22]
• Issues: (1) consequence is unclear, and (2) server-side apps only  

• What are Consequences?
• Further vulnerability (damages) caused by Prototype Pollution
• Examples: Cross-site Scripting (XSS) and Cookie/URL manipulation

3



System Security Lab

Design: Intuition

Adversary-controlled Inputs
?__proto__[k]=<script>alert('Exploited')</script>

• Idea: Joint Taint Flow Analysis

for (;	M	<=N;	M++)	{

P	=	R[M]	===	""	?	O.length :	R[M];

O	=	O[P]	=	M	<	N	?	O[P]	||	(R[M	+	1]	&&	isNaN(R[M	+	1])	?	{}	:	[])	:	J

}
data	=	{	'123':	'abc'	};
for (var field	in data)	{	
$unitSpecs.append("<li><span	class='"	+	field	+	"'>"	+	data[field]	+	"</span></li>");
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Design: Intuition

Prototype Pollution Sink 1: O = O[P]

Prototype Pollution Sink 2: O[P] = J

XSS Sink: $unitSpecs.append( …+ data[field] + … ); 

Adversary-controlled Inputs
?__proto__[k]=<script>alert('Exploited')</script>

Data flow I

Data flow II
Data flow III

Joint Taint Flow: 
Data Flow I to III &
Object Taint Flow
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Object taint flow
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Design: System Architecture

Joint Taint Flow Analysis Result Validation
URL ReportFlows

Exploits

Joint Taint Flow Analysis Result Validation

Input/Exploit
Generator

Dynamic 
Taint Engine n times

Exploit
Validation

Defense
Analysis
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Roadmap

• Introduction
• Implementation

• What software tools do we use to implement ProbetheProto? 
• What challenges have we met when deploying it on real-

world websites? 
• Evaluation 
• Discussion 
• Wrap-up
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Implementation: Choices of 
Programming Languages

URL ReportFlows

Exploits

Joint Taint Flow Analysis Result Validation

Input/Exploit
Generator

Dynamic 
Taint Engine n times

Exploit
Validation

Defense
Analysis
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Melicher et al.
Chromium, V8 engine 
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Experience with deploying

• Getting Chromium to run
• Got a Google link from Melicher et al. for their Chromium-based system
• Deploying Ubuntu 14 and other dependencies for the old-version 

Chromium
• Modifying v8 engine

• Using gdb to debug v8 
• Searching for lines of interest, e.g., v8/src/object.h, 

v8/src/runtime/runtime-object.cc, etc. 
• Compilation takes too long: Use the incremental building!  
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Problems with crawling 

• Crawler choice: Python or Chrome extension? 
• Old version Chromium: no proper chromedriver found.  
• How to control the browser: through bash scripts. 

• Crawler settings: choosing the parameters. 
• How many instances running in parallel? 
• Running multiple windows or running multiple tabs in one window?
• What is the timeout for each page and for each website?  
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Runtime Incidents when crawling

• Links that download files will stop all instances. 
• Solution: filter the links. 
• Should periodically check the crawler status manually. 
• Should set checkpoints for the crawler to continue. 

• Cache/Memory is full: Causes the browser to crash. 
• Periodically clear the cache/memory. 
• Also, remove the useless config files of Chromium. 
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Roadmap

• Introduction
• Implementation
• Evaluation

• What are the experiment settings and evaluation results for 
each of our RQ?

• What are the intermediate/unsuccessful results and what did 
we do to improve them?

• Discussion 
• Wrap-up
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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Measurement Settings

• Target: top one million Tranco websites. 
• Server details: 192 GB memory and Intel® Xeon® E5-2690 v4 

2.6GHz CPU. 
• Time period: from November 12th, 2021 until December 3rd, 

2021 for three weeks in total. 
• Crawler parameters: 20 instances running in parallel and a 120-

second timeout for each website. 
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Measurement Results

• Zero-Day vulnerabilities
• Total: 2,917 out of one million
• Fixed: 240
• Consequence breakdown

• Vulnerable domain examples

Consequences # Vulnerabilities
XSS 48
Cookie manipulations 736
URL manipulations 830
No observable 
consequence 

1,595

Total 2,917

Domain Ranking Status Exploits
weebly.com 96 Reported https://www.weebly.com/domains?__proto__[1]=v
cnet.com 150 Fixed https://www.cnet.com/?constructor[prototype][1]=v 
mckinsey.com 693 Fixed https://www.mckinsey.com/?__proto__[k]=v
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Breakdown by Sources/Sinks

Joint Flow Sources # Vulnerabilities 
{URL search} 1,770 
{URL} 1,115 
{URL hash} 2
{URL, URL search} 12
{Cookie} 5
{Message} 13
Total 2,917 

Consequences Sink # Vulnerabilities
XSS innerHTML 10

append 4
eval 3
setAttribute 31

Cookie Manipulation Arbitrary 666
Specific 95

URL Manipulation anchor 152
iframe 205
img 500
script 192

Total of Above Three - 1,322
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Intermediate Results

20

Joint Flow Sources # Vulnerabilities 
{URL search} 490
{URL} 82
{URL hash} 2
{URL, URL search} 1
{Cookie} 5
{Message} 13
Total 591 

# Vulnerabilities 
1,770 
1,115 
2
12
5
13
2,917 

Consequences # Vulnerabilities
XSS 3

Cookie manipulations 132

URL manipulations 253

No observable 
consequence 

313

Total 591

# Vulnerabilities
48

736

830

1,595

2,917
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How did we improve the results? 

• Removing false positives: Design the result validation module. 
• Validate both prototype pollution exploits and consequence exploits. 
• Follow the standard validation steps for prototype pollution, to avoid 

any false positives. 
• Uncovering more vulnerabilities: Improve the Input/Exploit 

Generator. 
• Apply various input formats. 
• E.g., nested array lookup: k0[k1][k2]=v 
• And different delimiters: k0=v0&k1=v1&k2=v2
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Responsible disclosure

• Search for email addresses
• Developed an information retrieval tool based on regular expressions
• Search on whois record and their own websites

• Problem: half not found or invalid! 
• Solution: We manually inspect over 1,000 websites to find out 

how to reach out to them and send the reports automatically. 
• We allow 45 days as the responsible disclosure window. 
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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Comparison with Prior Works

• Problem: No prior works measuring client-side prototype pollution 
and its consequences! 

• Solution: We modify a state-of-the-art server-side detection tool, 
called ObjLupAnsys, to support client side and then compare our 
system with it. 

• We added client-side sources, e.g., location and document.cookie, 
to ObjLupAnsys to make it better fit the client-side applications. 
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Comparison Results

• Two experiments: (i) Top 30 thousand websites; (ii) 2,738 
vulnerable websites found by our system. 

• (i) ObjLupAnsys only reports one website which turns out to be a 
false positive. 

• (ii) ObjLupAnsys only detects four websites out of 2,738. 
• ProbetheProto significantly outperforms ObjLupAnsys.  
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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Performance Overhead Improvements

• Reasonable overhead now: 
38.6% compared with 
legacy Chromium.

• Intermediate results: over 
200% overhead compared 
with legacy Chromium.

• How did we improve that? 

38.6%	nowIntermediate	result:	>200%
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Improving Performance Overhead

• Make sure our implementation is optimized.
• The object taint bit is a previously unused one. 
• No additional memory is involved. 
• The codes for input/exploit generation is efficient. 

• Remove unnecessary functionalities in Melicher et al.’s taint 
tracking engine. 

• Change configurations to a light-weight version. 
• E.g., set is_debug flag to false. 
• Release memory for information important to their paper but 

unnecessary to ours. 
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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False Negative Results

• Experiment settings: a manually-annotated benchmark from a 
Github repository. 

• (a) scripts with prototype pollution vulnerabilities
• (b) scripts that are vulnerable to XSS if a prototype pollution is present. 

• Results: 9.5% FNs for prototype pollution, 20.9% for XSS 
consequences. 
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Vulnerabilities TP FN Total TPR
Prototype Pollution 19 2 21 90.5%
XSS Consequences 34 9 43 79.1%
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Improving False Negatives

• Intermediate results: 80% FNs for XSS detection.
• Thinking from the exploit formats …
• __proto__[k1] [k2]=<script>alert('Exploited')</script>
• Solution: Provide a rich list of possible XSS exploits to the Input/Exploit 

Generator. 
• We also run Joint Taint Flow Analysis for multiple iterations to generate 

multiple parameters in nested object lookups, each iteration 
responsible for one parameter in each bracket. 
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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CDF of code coverage increase for input/exploit generation 

Code Coverage Results

• Tools: Google Chrome’s DevTools
• Metrics: the ratio between used and total bytes of the target 

vulnerable JavaScript file(s). 
• Dataset: (i) all of the 43 files with XSS consequences in the Github

dataset; (ii) 50 random real-world websites that are vulnerable to 
prototype pollution. 
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CDF of code coverage
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Roadmap for Evaluation

• I.   Measurement Results 
• II.  Comparison 
• III. Performance
• IV. False Negatives
• V.  Code Coverage
• VI. Defense 
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Defense Analysis Results

35

Defense Technique # Joint Flows # Domains 
Data-flow Property 

sanitization 
15 6

Object 
sanitization 

22,235 1,489 

Control-flow Property 
white/blacklist 

2,710 124
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High-Level Idea of Defense Analysis

• Control variable experiments: two runs.
• One with normal inputs; 
• The other with generated exploit inputs. 
• Data flow changes à Defense! 

• Data flow unchanged but data contents differ? 
• The contents are altered by a defense.  
• Category: data-flow defense. 

• Data flow changed? (Taint flow disappeared)
• The flows are altered by a defense.  
• Category: control-flow defense. 
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Learning from Case Study (I)

• Case study gives us hints about defense categories in real-
world websites. 

• Example: facebook.com (property sanitization, a sub-category of data-
flow defense). 
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//	property	sanitization
//	convert	a	from	"__proto__"	to	"\ud83d\udf56"
function i (a)	{

return	a	===	"__proto__"	?	"\ud83d\udf56":	a

}
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Learning from Case Study (II)

• Case study gives us hints about defense categories in real-
world websites. 

• Example: kiev.kupikupon.com.ua (control-flow defense). 

36

//	a	property	whitelist	for	control-flow	defense
function (i,	e)	{

var n	=	{	"utmz":	{}	},	s	=	n[i];	
if	("utmz"	===	i)	{	
/*	When	i="__proto__",	this	code	block	will	not	be	

executed.	*/	
… } }
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Case studies are powerful! 

• Different sources that trigger prototype pollution
• holocaust.cz, for Message sources

• Consequece category collection
• 247sports.com, for cookie manipulation

• Defense analysis category collection
• facebook.com, for data-flow defense and control-flow defense
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Roadmap

• Introduction
• Implementation
• Evaluation
• Discussion 
• Wrap-up
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Discussion 

• Did you use experimentation artifacts borrowed from the 
community?

• Yes. 
• The dynamic taint engine by Melicher et al.  
• The prior detection tool by Song et al. 
• Google Chrome DevTools. 
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Discussion 

• Did you attempt to replicate or reproduce results of earlier 
research as part of your work?

• Yes. 
• Performance overhead by Melicher et al. 
• Measurement results of ObjLupAnsys by Song et al. 
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Discussion 

• What can be learned from your methodology and your 
experience using your methodology?

• Go over each part of the system and/or the whole working process to 
find which ones are causing unsuccessful results. 

• Learn from the case studies when there are unexpected results. 
• Control variables during experiment to get reliable evaluation results. 
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Discussion 

• Did you produce any intermediate results including possible 
unsuccessful tests or experiments?

• Yes. 
• Unsuccessful results including unreliable measurement results, high 

overhead, and high false negatives. 
• Eventually, we improved all of those results. 
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Roadmap

• Introduction
• Implementation
• Evaluation
• Discussion
• Wrap-up
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Wrap-up

• ProbetheProto is the first large-scale measurement of client-
side prototype pollution and further consequences. 

• ProbetheProto discovers 2,917 zero-day, exploitable 
vulnerabilities: 48 leading to XSS, 736 cookie manipulations, 
and 830 URL manipulations.

• We have learnt lessons when we improve the 
intermediate/unsuccessful results, such as conducting case 
studies and control-variable experiments. 
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Thank you. Questions? 

• ProbetheProto repo: https://github.com/client-pp/ProbetheProto. 
• A list of vulnerable websites: 

https://github.com/clientpp/ProbetheProto/blob/main/vul_site_info.md.  
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