
System Security Lab

How is Proto being Probed?
The Experimental Aspects
behind the Large-scale
Measurement of Client-Side
Prototype Pollution
Vulnerabilities
Zifeng Kang, Song Li, and Yinzhi Cao
Department of Computer Science, Johns Hopkins University

System Security Lab

Roadmap

• Introduction
• What are prototype pollution and its consequences?
• How do we detect them? What is the System design?

• Implementation
• Evaluation
• Discussion
• Wrap-up

2

System Security Lab

Introduction

• What is Prototype Pollution?
• A relatively-new JavaScript vulnerability type discovered in 2018
• Polluting a base object’s property, e.g., Object.prototype.toString

• Related Work
• [ESEC/FSE’21], [USENIX’22]
• Issues: (1) consequence is unclear, and (2) server-side apps only

• What are Consequences?
• Further vulnerability (damages) caused by Prototype Pollution
• Examples: Cross-site Scripting (XSS) and Cookie/URL manipulation

3

System Security Lab

Design: Intuition

Adversary-controlled Inputs
?__proto__[k]=<script>alert('Exploited')</script>

• Idea: Joint Taint Flow Analysis

for (;	M	<=N;	M++)	{

P	=	R[M]	===	""	?	O.length :	R[M];

O	=	O[P]	=	M	<	N	?	O[P]	||	(R[M	+	1]	&&	isNaN(R[M	+	1])	?	{}	:	[])	:	J

}
data	=	{	'123':	'abc'	};
for (var field	in data)	{	
$unitSpecs.append(""	+	data[field]	+	"");

12

System Security Lab

Design: Intuition

Prototype Pollution Sink 1: O = O[P]

Prototype Pollution Sink 2: O[P] = J

XSS Sink: $unitSpecs.append(…+ data[field] + …);

Adversary-controlled Inputs
?__proto__[k]=<script>alert('Exploited')</script>

Data flow I

Data flow II
Data flow III

Joint Taint Flow:
Data Flow I to III &
Object Taint Flow

12

Object taint flow

System Security Lab

Design: System Architecture

Joint Taint Flow Analysis Result Validation
URL ReportFlows

Exploits

Joint Taint Flow Analysis Result Validation

Input/Exploit
Generator

Dynamic
Taint Engine n times

Exploit
Validation

Defense
Analysis

9

System Security Lab

Roadmap

• Introduction
• Implementation

• What software tools do we use to implement ProbetheProto?
• What challenges have we met when deploying it on real-

world websites?
• Evaluation
• Discussion
• Wrap-up

10

System Security Lab

Implementation: Choices of
Programming Languages

URL ReportFlows

Exploits

Joint Taint Flow Analysis Result Validation

Input/Exploit
Generator

Dynamic
Taint Engine n times

Exploit
Validation

Defense
Analysis

11

Melicher et al.
Chromium, V8 engine

System Security Lab

Experience with deploying

• Getting Chromium to run
• Got a Google link from Melicher et al. for their Chromium-based system
• Deploying Ubuntu 14 and other dependencies for the old-version

Chromium
• Modifying v8 engine

• Using gdb to debug v8
• Searching for lines of interest, e.g., v8/src/object.h,

v8/src/runtime/runtime-object.cc, etc.
• Compilation takes too long: Use the incremental building!

12

System Security Lab

Problems with crawling

• Crawler choice: Python or Chrome extension?
• Old version Chromium: no proper chromedriver found.
• How to control the browser: through bash scripts.

• Crawler settings: choosing the parameters.
• How many instances running in parallel?
• Running multiple windows or running multiple tabs in one window?
• What is the timeout for each page and for each website?

13

System Security Lab

Runtime Incidents when crawling

• Links that download files will stop all instances.
• Solution: filter the links.
• Should periodically check the crawler status manually.
• Should set checkpoints for the crawler to continue.

• Cache/Memory is full: Causes the browser to crash.
• Periodically clear the cache/memory.
• Also, remove the useless config files of Chromium.

14

System Security Lab

Roadmap

• Introduction
• Implementation
• Evaluation

• What are the experiment settings and evaluation results for
each of our RQ?

• What are the intermediate/unsuccessful results and what did
we do to improve them?

• Discussion
• Wrap-up

15

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

16

System Security Lab

Measurement Settings

• Target: top one million Tranco websites.
• Server details: 192 GB memory and Intel® Xeon® E5-2690 v4

2.6GHz CPU.
• Time period: from November 12th, 2021 until December 3rd,

2021 for three weeks in total.
• Crawler parameters: 20 instances running in parallel and a 120-

second timeout for each website.

17

System Security Lab

Measurement Results

• Zero-Day vulnerabilities
• Total: 2,917 out of one million
• Fixed: 240
• Consequence breakdown

• Vulnerable domain examples

Consequences # Vulnerabilities
XSS 48
Cookie manipulations 736
URL manipulations 830
No observable
consequence

1,595

Total 2,917

Domain Ranking Status Exploits
weebly.com 96 Reported https://www.weebly.com/domains?__proto__[1]=v
cnet.com 150 Fixed https://www.cnet.com/?constructor[prototype][1]=v
mckinsey.com 693 Fixed https://www.mckinsey.com/?__proto__[k]=v

18

System Security Lab

Breakdown by Sources/Sinks

Joint Flow Sources # Vulnerabilities
{URL search} 1,770
{URL} 1,115
{URL hash} 2
{URL, URL search} 12
{Cookie} 5
{Message} 13
Total 2,917

Consequences Sink # Vulnerabilities
XSS innerHTML 10

append 4
eval 3
setAttribute 31

Cookie Manipulation Arbitrary 666
Specific 95

URL Manipulation anchor 152
iframe 205
img 500
script 192

Total of Above Three - 1,322

19

System Security Lab

Intermediate Results

20

Joint Flow Sources # Vulnerabilities
{URL search} 490
{URL} 82
{URL hash} 2
{URL, URL search} 1
{Cookie} 5
{Message} 13
Total 591

Vulnerabilities
1,770
1,115
2
12
5
13
2,917

Consequences # Vulnerabilities
XSS 3

Cookie manipulations 132

URL manipulations 253

No observable
consequence

313

Total 591

Vulnerabilities
48

736

830

1,595

2,917

System Security Lab

How did we improve the results?

• Removing false positives: Design the result validation module.
• Validate both prototype pollution exploits and consequence exploits.
• Follow the standard validation steps for prototype pollution, to avoid

any false positives.
• Uncovering more vulnerabilities: Improve the Input/Exploit

Generator.
• Apply various input formats.
• E.g., nested array lookup: k0[k1][k2]=v
• And different delimiters: k0=v0&k1=v1&k2=v2

21

System Security Lab

Responsible disclosure

• Search for email addresses
• Developed an information retrieval tool based on regular expressions
• Search on whois record and their own websites

• Problem: half not found or invalid!
• Solution: We manually inspect over 1,000 websites to find out

how to reach out to them and send the reports automatically.
• We allow 45 days as the responsible disclosure window.

22

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

23

System Security Lab

Comparison with Prior Works

• Problem: No prior works measuring client-side prototype pollution
and its consequences!

• Solution: We modify a state-of-the-art server-side detection tool,
called ObjLupAnsys, to support client side and then compare our
system with it.

• We added client-side sources, e.g., location and document.cookie,
to ObjLupAnsys to make it better fit the client-side applications.

24

System Security Lab

Comparison Results

• Two experiments: (i) Top 30 thousand websites; (ii) 2,738
vulnerable websites found by our system.

• (i) ObjLupAnsys only reports one website which turns out to be a
false positive.

• (ii) ObjLupAnsys only detects four websites out of 2,738.
• ProbetheProto significantly outperforms ObjLupAnsys.

25

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

26

System Security Lab

Performance Overhead Improvements

• Reasonable overhead now:
38.6% compared with
legacy Chromium.

• Intermediate results: over
200% overhead compared
with legacy Chromium.

• How did we improve that?

38.6%	nowIntermediate	result:	>200%

27

System Security Lab

Improving Performance Overhead

• Make sure our implementation is optimized.
• The object taint bit is a previously unused one.
• No additional memory is involved.
• The codes for input/exploit generation is efficient.

• Remove unnecessary functionalities in Melicher et al.’s taint
tracking engine.

• Change configurations to a light-weight version.
• E.g., set is_debug flag to false.
• Release memory for information important to their paper but

unnecessary to ours.

28

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

29

System Security Lab

False Negative Results

• Experiment settings: a manually-annotated benchmark from a
Github repository.

• (a) scripts with prototype pollution vulnerabilities
• (b) scripts that are vulnerable to XSS if a prototype pollution is present.

• Results: 9.5% FNs for prototype pollution, 20.9% for XSS
consequences.

30

Vulnerabilities TP FN Total TPR
Prototype Pollution 19 2 21 90.5%
XSS Consequences 34 9 43 79.1%

System Security Lab

Improving False Negatives

• Intermediate results: 80% FNs for XSS detection.
• Thinking from the exploit formats …
• __proto__[k1] [k2]=<script>alert('Exploited')</script>
• Solution: Provide a rich list of possible XSS exploits to the Input/Exploit

Generator.
• We also run Joint Taint Flow Analysis for multiple iterations to generate

multiple parameters in nested object lookups, each iteration
responsible for one parameter in each bracket.

31

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

32

System Security Lab

CDF of code coverage increase for input/exploit generation

Code Coverage Results

• Tools: Google Chrome’s DevTools
• Metrics: the ratio between used and total bytes of the target

vulnerable JavaScript file(s).
• Dataset: (i) all of the 43 files with XSS consequences in the Github

dataset; (ii) 50 random real-world websites that are vulnerable to
prototype pollution.

33

CDF of code coverage

System Security Lab

Roadmap for Evaluation

• I. Measurement Results
• II. Comparison
• III. Performance
• IV. False Negatives
• V. Code Coverage
• VI. Defense

34

System Security Lab

Defense Analysis Results

35

Defense Technique # Joint Flows # Domains
Data-flow Property

sanitization
15 6

Object
sanitization

22,235 1,489

Control-flow Property
white/blacklist

2,710 124

System Security Lab

High-Level Idea of Defense Analysis

• Control variable experiments: two runs.
• One with normal inputs;
• The other with generated exploit inputs.
• Data flow changes à Defense!

• Data flow unchanged but data contents differ?
• The contents are altered by a defense.
• Category: data-flow defense.

• Data flow changed? (Taint flow disappeared)
• The flows are altered by a defense.
• Category: control-flow defense.

28

System Security Lab

Learning from Case Study (I)

• Case study gives us hints about defense categories in real-
world websites.

• Example: facebook.com (property sanitization, a sub-category of data-
flow defense).

36

//	property	sanitization
//	convert	a	from	"__proto__"	to	"\ud83d\udf56"
function i (a)	{

return	a	===	"__proto__"	?	"\ud83d\udf56":	a

}

System Security Lab

Learning from Case Study (II)

• Case study gives us hints about defense categories in real-
world websites.

• Example: kiev.kupikupon.com.ua (control-flow defense).

36

//	a	property	whitelist	for	control-flow	defense
function (i,	e)	{

var n	=	{	"utmz":	{}	},	s	=	n[i];	
if	("utmz"	===	i)	{	
/*	When	i="__proto__",	this	code	block	will	not	be	

executed.	*/	
… } }

System Security Lab

Case studies are powerful!

• Different sources that trigger prototype pollution
• holocaust.cz, for Message sources

• Consequece category collection
• 247sports.com, for cookie manipulation

• Defense analysis category collection
• facebook.com, for data-flow defense and control-flow defense

38

System Security Lab

Roadmap

• Introduction
• Implementation
• Evaluation
• Discussion
• Wrap-up

37

System Security Lab

Discussion

• Did you use experimentation artifacts borrowed from the
community?

• Yes.
• The dynamic taint engine by Melicher et al.
• The prior detection tool by Song et al.
• Google Chrome DevTools.

38

System Security Lab

Discussion

• Did you attempt to replicate or reproduce results of earlier
research as part of your work?

• Yes.
• Performance overhead by Melicher et al.
• Measurement results of ObjLupAnsys by Song et al.

38

System Security Lab

Discussion

• What can be learned from your methodology and your
experience using your methodology?

• Go over each part of the system and/or the whole working process to
find which ones are causing unsuccessful results.

• Learn from the case studies when there are unexpected results.
• Control variables during experiment to get reliable evaluation results.

38

System Security Lab

Discussion

• Did you produce any intermediate results including possible
unsuccessful tests or experiments?

• Yes.
• Unsuccessful results including unreliable measurement results, high

overhead, and high false negatives.
• Eventually, we improved all of those results.

38

System Security Lab

Roadmap

• Introduction
• Implementation
• Evaluation
• Discussion
• Wrap-up

39

System Security Lab

Wrap-up

• ProbetheProto is the first large-scale measurement of client-
side prototype pollution and further consequences.

• ProbetheProto discovers 2,917 zero-day, exploitable
vulnerabilities: 48 leading to XSS, 736 cookie manipulations,
and 830 URL manipulations.

• We have learnt lessons when we improve the
intermediate/unsuccessful results, such as conducting case
studies and control-variable experiments.

40

System Security Lab

Thank you. Questions?

• ProbetheProto repo: https://github.com/client-pp/ProbetheProto.
• A list of vulnerable websites:

https://github.com/clientpp/ProbetheProto/blob/main/vul_site_info.md.

41

