
Precisely Characterizing Security Impact in a
Flood of Patches via Symbolic Rule

Comparison

Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu

1

Why do we need to identify security bugs?

2

Motivation

● The overwhelming number of bugs reports
○
○

■

3

Motivation

● The overwhelming number of bugs reports

● Patch propagation in derivative programs is hard and
expensive
○

https://developer.solid-run.com/knowl
edge-base/linux-based-os-for-ib8000/

4

Maintainers are prioritizing to fix security bugs.
Unrecognized security bugs may be left unpatched!

Motivation

● The overwhelming number of bugs reports
○

● Patch propagation in derivative programs is hard and
expensive

5

Our goal:

How to identify patches for security bugs?

7

Traditional approaches:

● Text-mining
○

● Statistical analysis
○

Limitations:

8

commit 41bdc78544b8a93a9c6814b8bbbfef966272abbe
Author: Andy Lutomirski <luto@amacapital.net>
Date: Thu Dec 4 16:48:16 2014 -0800

 x86/tls: Validate TLS entries to protect espfix

 Installing a 16-bit RW data segment into the GDT defeats espfix.
 AFAICT this will not affect glibc, Wine, or dosemu at all.

 Signed-off-by: Andy Lutomirski <luto@amacapital.net>
 Acked-by: H. Peter Anvin <hpa@zytor.com>
 Cc: stable@vger.kernel.org
 Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 Cc: Linus Torvalds <torvalds@linux-foundation.org>
 Cc: security@kernel.org <security@kernel.org>
 Cc: Willy Tarreau <w@1wt.eu>
 Signed-off-by: Ingo Molnar <mingo@kernel.org>

Limitations of traditional approaches:

CVE-2014-8133 Permission bypass

9

We prefer a program analysis--based method

● Understand the semantics of patches and bugs precisely

● A bug is a security bug if it causes security impacts when
triggered.

● A patch is for a security bug when it blocks the security
impacts

10

How to know if a patch blocks security
impacts?

11

Security-rule violations cause security impacts.
We thus check if a patch blocks security-rule violations

A security impact = A security-rule violation

Security rules are coding guidelines used to prevent security
bugs.

12

Common security rules

Rule 1: In-bound access

Rule 2: No use after free

Rule 3: Use after initialization

Rule 4: Permission check
before sensitive operations

13

Violations for common security rules

Rule 1: In-bound access

Rule 2: No use after free

Rule 3: Use after initialization

Rule 4: Permission check
before sensitive operations

Out-of-bound access

Use-after-free Permission bypass

Uninitialized use
violation violation

violation violation

14

A patch blocks security impacts if:
If we can prove the following conditions:

Condition 1: The unpatched version of code violates a
security rule.

Condition 2: The patched version of code does not violate the
security rule.

15

Challenge:

Intuition:

two unique properties
under-constrained symbolic execution

Property 1: Constraints model violations

Security-rule violations can be modeled as constraints

Example:

Buffer access:

Constraints for out-of-bound access:

 Index ⩾ UpBound Index ⩽ LowBound

18

Property 2: Conservativeness

Under-constrained symbolic execution is conservative.

● False-positive solutions
○ If the constraints are solvable, this can be a false

positive.

● Proved unsolvability
○ If it cannot find a solution against constraints, they are

indeed unsolvable.

19

Leverage the properties for determining the security-rule
violations

● Patch-related operations can be modeled as symbolic
constraints
○

● To show the patched version won’t violate a security rule

○ violating

● To show the unpatched version will violate the security
rule
○ non-violating 20

Our approach: Symbolic rule comparison

1. Construct opposite constraint sets for the patched and
unpatched version

2. Check the unsolvability of these constraint sets
3. Confirm the patches for security bugs if both constraint

sets are unsolvable
21

Rationale behind our approach

● For a security rule, the patched version NEVER violate it
○

22

Rationale behind our approach

● For a security rule, the patched version NEVER violate it
○

● In the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
○

23

Rationale behind our approach

● For a security rule, the patched version NEVER violate it
○

● In the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
○

● The patch changes the code from an unsafe state to a safe
state
○ Precisely confirmed with property 2

24

Rationale behind our approach

The patch fixed a security bug with the security impact that
corresponding to the security rule violation.

● For a security rule, the patched version NEVER violate it
○

● In the situations that opposite to conditions of the patch, the
unpatched version MUST violate this security rule
○

● The patch changes the code from an unsafe state to a safe
state

25

A concrete example

26

STEP 1: Symbolically analyzing patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

27

STEP 1: Symbolically analyzing patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Identify security operations.

28

STEP 1: Symbolically analyzing patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Identify security operations.

Extract critical variable.

29

STEP 1: Symbolically analyzing patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Identify security operations.

Extract critical variable.

Identify vulnerable operations.

Slicing

30

STEP 2: Collecting and construct constraints for
patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Collecting constraints
Constraints source Constraints

Security operations

Slice

Artificial constraints
(Security rules)

Violating security rules

31

STEP 3: Solving constraints for patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Collecting constraints
Constraints source Constraints

Security operations

Slice

Artificial constraints
(Security rules)

These constraints are unsolvable!

32

STEP 3: Solving constraints for patched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {
+ if (sta_id >= IWLAGN_STATION_COUNT) {
+ IWL_ERR(priv, "invalid sta_id %u", sta_id);
+ return -EINVAL;
+ }

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

These constraints are unsolvable!

The patched version won’t
violate the security rule.

33

STEP 1’: Symbolically analyzing unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Identify vulnerable operations.

34

STEP 1’: Symbolically analyzing unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Extract critical variable.

Identify vulnerable operations.

35

STEP 1’: Symbolically analyzing unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Extract critical variable.

Identify vulnerable operations.

Slicing

36

STEP 2’: Collecting and construct constraints for
unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Collecting constraints

Constraints source Constraints

Security operations

Slice -

Artificial constraints
(Security rules)

37

STEP 2’: Collecting and construct constraints for
unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Collecting constraints

Constraints source Constraints

Security operations

Slice -

Artificial constraints
(Security rules)

Non-violating security rules

38

STEP 3’: Solving constraints for unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Slicing & Collecting constraints

Constraints source Constraints

Security operations

Slice -

Artificial constraints
(Security rules)

These constraints are also
unsolvable!

39

STEP 3’: Solving constraints for unpatched code

// CVE-2012-6712
int iwl_sta_ucode_activate(... , u8 sta_id) {

if (!(priv->stations[sta_id].used))
IWL_ERR(priv,"Error active station id %u "
 "addr %pM\n",
 sta_id, priv->stations[sta_id].sta.sta.addr);

...
return 0;

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

The unpatched version MUST
violate the security rule.

40

These constraints are also
unsolvable!

STEP 4: Symbolic rules comparison

● The constraints for patched version are unsolvable!
○ “Violating security rules” is unsolvable
○ Patched version does not have an out-of-bound access

● The constraints for unpatched version are unsolvable!
○ “NOT violating security rules” is unsolvable
○ Unpatched version has out-of-bound accesses

41

Conclusion: The patch blocks an out-of-bound access.

Advantages of our approach

● Very few false positives --- Special use of under-constrained symbolic
execution
○ 97%

● Determine security impacts of bugs
○

● Easy to extend
○

42

Implementation

● Our prototype: SID
○

● Currently support five types of common security impacts
○

43

Evaluation

44

Performance

● We analyzed 54K patches
○

● The experiments were performed on a desktop with 32GB
RAM and 6 core Intel Xeon CPU
○

● The analysis takes an average of 0.83 seconds for each
patch.

45

False-positive and false-negative analysis

● Few false positives
○

● False negatives (can be reduced)
○
○

46

● Security impacts
○
○

● Reachability
○

Security evaluation for identified security bugs

47

Security evaluation for identified security bugs

● Vulnerability confirmation for CVE
○ 54
○

● Reachability analysis for security bugs
○ 28
○ 154

● 21 security bugs still unpatched in the Android kernel.

48

Conclusions

● Timely patching of security bugs requires the
determination of security impacts
○
○

● We exploit the properties of under-constrained symbolic
execution for the determination
○ Symbolic rule comparison

● Identified many overlooked security bugs in the kernel
○ 49

50

51

52

53

54

55

Security impacts, security rules violation, and fixes

Main security impacts Security rules violation Common fixes
Out-of-bound access (16.5%) Read/Write out of boundary Add bound check (79%)

Uninitialized use (13.7%) Use before initialization Add initialization (78%)

Permission bypass (21.9%) Sensitive operations without
perm check

Add permission check
(59%)

Use-after-free, double-free
(4.3%)

Use freed pointer Add nullification (32%)

...

56

Modeling different types of security bugs

Security operation Patched version Unpatched version

Pointer nullification

Initialization

Permission check

Bound check ⩾
⩽

Constraints for security operations from patches. FlagCV : Flag symbol; CV: critical variable ;
UpBound: checked upper bound; LowBound: checked lower bound.

57

Modeling different types of security bugs

Security rules Patched version Unpatched version

No use after free

Use after initialization

Permission check
before sensitive
operations

In-bound access ⩾
⩽

Constraints from security rules. FlagCV : Flag symbol; CV: critical variable; MAX: maximum bound
of the buffer; MIN: minimum bound of the buffer

58

Generality of patch model

● The existence of three key components in vulnerabilities
○ 77%
○ 11%

● After extending, SID can support the security-impact
determination for them

59

What is the common model of
patches for security bugs?

60

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, …) ;

61

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, …) ;

62

Common patch model and key components

// Unpatched program

Vulnerable_operation(Critical variable, …) ;

63

Common patch model and key components

// Patched program
Security_operation(Critical variable, …);

Vulnerable_operation(Critical variable, …) ;
+

64

Common patch model and key components

// Patched program
Security_operation(Critical variable, …);

Vulnerable_operation(Critical variable, …) ;
+

65

Common patch model and key components

// Patched program
Security_operation(Critical variable, …);

Vulnerable_operation(Critical variable, …) ;
+

NOT Violate security rules
66

