

Mind The Portability

A Warriors Guide through <u>Realistic</u> Profiled Side-channel Analysis

Shivam Bhasin¹, Dirmanto Jap¹, Anupam Chattopadhyay¹, Stjepan Picek², Annelie Heuser³, and Ritu Ranjan Shrivastwa⁴

¹NTU, Singapore ³IRISA, France ²TU Delft, Netherlands ⁴Secure-IC France

NDSS 2020, San Diego 23-26 February 2020

Side-Channel Analysis (SCA)

THEN

NOW

What is SCA?

- Non-invasive (power, EM, timing, ...) Attacked circuit
- Powerful & practical. Ex:
 - Keeloq
 - FPGA Bitstream encryption
 - Bitcoin wallets
- Applications: Secret key recovery and more ...
- Serious threat to embedded systems

SPA, DPA, templates, *etc.* \Rightarrow Side-channel trace

4

Types of SCA

- Simple SCA (ex. Visual inspection)
- Non Profiled SCA (ex. DPA, CPA, other on the fly statistical attacks)
- Profiled SCA (ex. Templates, Machine-Learning based attacks)

In the following, we focus on profiled power/EM attacks on embedded devices targeting encryption algorithms for secret key recovery

Profiled SCA

- Target exploitation in few traces, **ideally single trace**
- Classification Algorithm: Template Attacks (TA) vs Machine Learning (ML)
- Deep Learning has shown great success with protected implementations
- Recent work with deep learning report successful attack in 100X less traces (500 vs 5).

Expectations vs Reality

6

Expectations vs Reality

Portability

- B and B' are two copies of same device
- Differences between B and B' are due to uncontrolled variations in process, measurement setup, or other stochastic factors
- Portability denotes all settings in which an attacker can conduct the training on the measurement data obtained from a clone device B' and import the learned knowledge L_{B'} to model the actual device B, under similar parameter setup

Practical Study of Portability

Different Sources Of Portability: Process variation (chip, wires, PCB components, connectors), environmental factors, ...

Comparing Signal Quality

Comparing SCA Vulnerability

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

11

Same Device

Different Device

Why Does It Happen?

Proposed Multi-Device Model

Proposed Multi-Device Model

Multiple Device Model (MDM) denotes all settings where attacker can conduct the training on measurement data from a number of similar devices (≥ 2), B' = {B₀',..., B_{n-1}'} and import the learned knowledge $L_{B'}$ to model the actual device B, under similar but uncontrolled parameter setup

Overcoming Human Error

- Electromagnetic measurements often
 preferred over power measurements
 - Easy access
 - High SNR
 - Localized Leakage capture
 - ...
- Extremely sensitive to probe position (position, distance, and orientation)
- Error comes naturally when measuring on multiple devices
- We call this human error of placement
- A classical case of Portability

Overcoming Human Error

- Electromagnetic measurements often
 preferred over power measurements
 - Easy access
 - High SNR
 - Localized Leakage capture
 - ...
- Extremely sensitive to probe position (position, distance, and orientation)
- Error comes naturally when measuring on multiple devices
- We call this human error of placement
- A classical case of Portability

Conclusions

- One must consider portability issues in machine learning based SCA
- We proposed Multiple Device Model (MDM) to overcome portability
- Direct application to EM measurement
- Future Directions:
 - Application to heterogenous devices
 - MDM with one device noise, process-variation models

Thank You !!!

Side-Channel Analysis (SCA)

Lets look at a basic CMOS cell

20

Side-Channel Analysis (SCA)

Time Sample

Expectations vs Reality

- Profiling and Testing device MUST be distinct
- An aspect often overlooked in profiled SCA research
- Leads to pessimistic security evaluations
- A common issue for certification labs evaluating security-critical products
- Known as Portability

