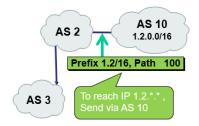
DISCO: Sidestepping RPKI's Deployment Barriers


Tomas Hlavacek¹ Italo Cunha²³ Yossi Gilad⁴ Amir Herzberg⁵ Ethan Katz-Bassett³ Michael Schapira⁴ Haya Shulman¹

¹Fraunhofer SIT ²Universidade Federal de Minas Gerais ³Columbia University ⁴Hebrew University of Jerusalem ⁵University of Connecticut

(日)(

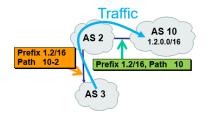
The Border Gateway Protocol (BGP)

- The Internet is composed of many Autonomous Systems (ASes)
 - Aka ISPs or Domains
- Inter-AS routing uses BGP
- Example: AS 10 announces it has prefix 1.2.0.0/16 to AS 2

Inter-AS routing with BGP: AS 10 announces prefix 1.2.0.0/16 to AS 2.

The Border Gateway Protocol (BGP)

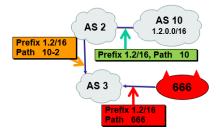
- The Internet is composed of many Autonomous Systems (ASes)
 - Aka ISPs or Domains
- Inter-AS routing uses BGP
- Example: AS 10 announces it has prefix 1.2.0.0/16 to AS 2
- AS 2 forwards to AS 3



Inter-AS routing with BGP: AS 10 announces prefix 1.2.0.0/16 to AS 2, who forwards to AS 3.

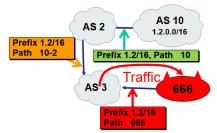
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Border Gateway Protocol (BGP)


- The Internet is composed of many Autonomous Systems (ASes)
 - Aka ISPs or Domains
- Inter-AS routing uses BGP
- Example: AS 10 announces it has prefix 1.2.0.0/16 to AS 2
- AS 2 forwards to AS 3
- AS 3 routes to 1.2/16 via AS 2

Inter-AS routing with BGP: AS 10 announces prefix 1.2.0.0/16 to AS 2, who forwards to AS 3. Now AS 3 sends traffic to 1.2/16 (via AS 2).

- BGP has no built-in security mechanism
- Long history of attacks and problems:
 - route manipulations, mostly prefix hijacks
 - route leaks
 - intentional and benign but always painful...


Example of prefix hijack: AS 666 claims to host 1.2.0.0/16.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

AS 666 announces prefix 1.2.0.0/16 to AS 3.

- BGP has no built-in security mechanism
- Long history of attacks and problems:
 - route manipulations, mostly prefix hijacks
 - route leaks
 - intentional and benign but always painful...

AS 666 announces prefix 1.2.0.0/16 to AS 3. AS 3 sends traffic to 666 (e.g., shorter path)

- BGP has no built-in security mechanism
- Long history of attacks and problems:
 - route manipulations, mostly prefix hijacks
 - route leaks
 - intentional and benign but always painful...

Defenses? ad-hod, proprietary (expensive), weak

- BGP has no built-in security mechanism
- Long history of attacks and problems:
 - route manipulations, mostly prefix hijacks
 - route leaks
 - intentional and benign but always painful...
- Defenses? ad-hod, proprietary (expensive), weak
- BGPsec (RFCs published in 2017)
 - Ambitious: prevent all route manipulations

- BGP has no built-in security mechanism
- Long history of attacks and problems:
 - route manipulations, mostly prefix hijacks
 - route leaks
 - intentional and benign but always painful...
- Defenses? ad-hod, proprietary (expensive), weak
- BGPsec (RFCs published in 2017)
 - Ambitious: prevent all route manipulations

- But deployment is hard/unlikely
- And: builds on RPKI...
- RPKI (RFCs published in 2012)
 - (only) prevent prefix hijacks
 - Our focus

RPKI: Resource Public Key Infrastructure

- ▶ Routing Certificate (RC): binds IP prefix π to public key pk
- Route Origin Authorization (ROA): binds (prefix,origin) pair
 - Max-Length: most-specific subprefix allowed
 - Signed by public key pk (certified for π)
- Route Origin Validation (ROV): validate origin in BGP announcements
 - Deployed by BGP routers
 - Discard announcement with 'invalid' (prefix,origin) pair (differ from ROA)

RPKI: Resource Public Key Infrastructure

- Routing Certificate (RC): binds IP prefix π to public key pk
- Route Origin Authorization (ROA): binds (prefix,origin) pair
 - Max-Length: most-specific subprefix allowed
 - Signed by public key pk (certified for π)
- Route Origin Validation (ROV): validate origin in BGP announcements
 - Deployed by BGP routers
 - Discard announcement with 'invalid' (prefix,origin) pair (differ from ROA)
 - 18.5% of (prefix,origin) pairs are 'valid', 0.8% 'invalid' [NIST]
 - Others (81.7%): no ROA
 - Concern: most 'invalid' due to 'wrong' ROA, not to hijack
 - Limited security benefits esp. for partial adoption
 - ► ⇒ Slow adoption

Research on Deploying RPKI

 RPKI ecosystem and deployment: Wahlisch*CCR12, lamartino*PAM15, Wahlisch*HotNet15, Gilad*NDSS17, Gilad*HotNts18, Reuters*CCR18, Hlavacek*DSN18, Chung*IMC19, Testart*PAM20

RPKI security concerns, extensions:

Misbehaving authority: Cooper*HotNts13, Heilman*SigCom14

- 'Path-end' extension: Cohen*SigComm16
- Max-Length considered harmful: Gilad*CoNext17

Research on Deploying RPKI

 RPKI ecosystem and deployment: Wahlisch*CCR12, lamartino*PAM15, Wahlisch*HotNet15, Gilad*NDSS17, Gilad*HotNts18, Reuters*CCR18, Hlavacek*DSN18, Chung*IMC19, Testart*PAM20

RPKI security concerns, extensions:

- Misbehaving authority: Cooper*HotNts13, Heilman*SigCom14
- 'Path-end' extension: Cohen*SigComm16
- Max-Length considered harmful: Gilad*CoNext17
- This work (DISCO):
 - Complementary, <u>automated</u> Routing Certification mechanism

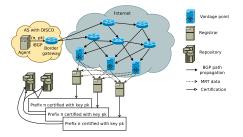
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Goal: easy-to-issue and <u>correct</u> ROAs, RCs

Pitfalls with RPKI Issuing of RCs, ROAs

- Routing Certificates (RCs):
 - Manual application by Origin-AS network manager
 - Errors have legal/business implications!
 - Room for errors, e.g., forgotten/wrong prefix, origin-AS
 - No (immediate) feedback on errors
 - Validation: manual based on records of assignment, transfer

- Route Origin Authorizations (ROAs):
 - Manual issuing by Origin-AS network manager
 - Errors have legal/business implications!
 - Large space for errors
 - Forgotten prefix/originAS/subprefix, wrong/missing Max-Length,...
 - No validation, no (immediate) feedback on errors

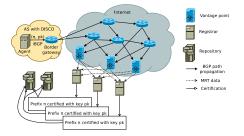

Pitfalls with RPKI Issuing of RCs, ROAs

- Routing Certificates (RCs):
 - Manual application by Origin-AS network manager
 - Errors have legal/business implications!
 - Room for errors, e.g., forgotten/wrong prefix, origin-AS
 - No (immediate) feedback on errors
 - Validation: manual based on records of assignment, transfer
- Route Origin Authorizations (ROAs):
 - Manual issuing by Origin-AS network manager
 - Errors have legal/business implications!
 - Large space for errors
 - Forgotten prefix/originAS/subprefix, wrong/missing Max-Length,...
 - No validation, no (immediate) feedback on errors
- Like Waltz: great if done well... But few do it (right)!
- Let's DISCO: easier, and: 'fool-proof'

DISCO

Decentralized Infrastructure for Securing & Certifying Origins

- Automated to reduce errors, ease adoption
 - Let's focus on issuing of Route Certificate (RC)
 - ROAs: later
 - DISCO-agent distributes (prefix π, pk) via BGP
 - Registrar-agents (1) validate, (2) certify and send to repositories
 - Details: next


DISCO: automated issuing of RC for prefix π . DISCO registrars validate the (π, pk) pair sent by agent.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DISCO

Decentralized Infrastructure for Securing & Certifying Origins

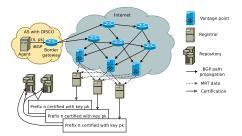
- Automated to reduce errors, ease adoption
 - Let's focus on issuing of Route Certificate (RC)
 - ROAs: later
 - DISCO-agent distributes (prefix π, pk) via BGP
 - Registrar-agents (1) validate, (2) certify and send to repositories
 - Details: next
 - DISCO RCs complement RPKI RCs
 - Conflict handling TBD



DISCO: automated issuing of RC for prefix π . DISCO registrars validate the (π, pk) pair sent by agent.

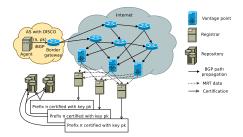
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DISCO: (1) automated validation of (pk,π) to issue RC


- DISCO-agent announces prefix π, via iBGP, as optional transitive attribute
 - RFC: should relay such attributes
 - Experiments: relayed by almost all ASes

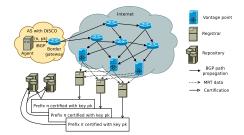
DISCO: automated issuing of RCs. DISCO Registrars validate the (π, pk) pair sent by agent. Agent encodes pk in transitive attribute.

DISCO: (1) automated validation of (pk,π) to issue RC


- DISCO-agent announces prefix π, via iBGP, as optional transitive attribute
 - RFC: should relay such attributes
 - Experiments: relayed by almost all ASes
- Registrars validate same pk received from (most) announcements of π
 - Same <u>or different</u> origin AS

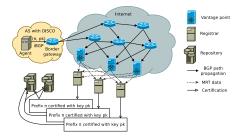
DISCO: automated issuing of RCs. DISCO Registrars validate the (π, pk) pair sent by agent. Agent encodes pk in transitive attribute.

DISCO: (1) automated validation of (pk, π) to issue RC


- DISCO-agent announces prefix π, via iBGP, as optional transitive attribute
 - RFC: should relay such attributes
 - Experiments: relayed by almost all ASes
- Registrars validate same pk received from (most) announcements of π
 - Same <u>or different</u> origin AS
- Works for \geq 97% of prefixes
 - N/A for un-announced prefixes, multi-home (< 1%)

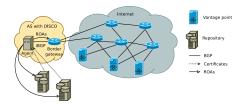
DISCO: automated issuing of RCs. DISCO Registrars validate the (π, pk) pair sent by agent. Agent encodes pk in transitive attribute.

DISCO: (2) automated issuing, distributing RC (after validation)

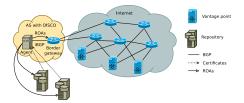

- Each DISCO registrar R_i has a share of threshold signing-key s_i
- Registrar R_i uses share s_i to partially-sign (pk,π) pair, and sends to repository

DISCO: automated issuing of RCs. Registrar R_i validates the (π, pk) pair, then partially-signs it and sends to repositories. Repositories combine partial-signatures to create RC for π .

DISCO: (2) automated issuing, distributing RC (after validation)

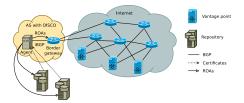

- Each DISCO registrar R_i has a share of threshold signing-key s_i
- Registrar R_i uses share s_i to partially-sign (pk,π) pair, and sends to repository
- Repositories combine partial-signatures and issue RC, i.e. certified (pk, π)
- Resiliency and security by redundancy of paths, registries and repositories
- Repositories provide both DISCO-RCs and RPKI-RCs

DISCO: automated issuing of RCs. Registrar R_i validates the (π, pk) pair, then partially-signs it and sends to repositories. Repositories combine partial-signatures to create RC for π .


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

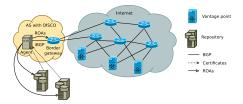
- ROA automatically issued by DISCO-agent
- Agent detects RC was certified and is in repositories
- Agent signs ROA for each (sub)prefix announced by AS

DISCO: automated issuing of correct ROAs to all announced (sub)prefixes. Max-Length used if more efficient (and then for all subprefixes).


- ROA automatically issued by DISCO-agent
- Agent detects RC was certified and is in repositories
- Agent signs ROA for each (sub)prefix announced by AS
 - Max-Length: only for all subprefixes

DISCO: automated issuing of correct ROAs to all announced (sub)prefixes. Max-Length used if more efficient (and then for all subprefixes).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

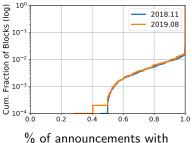

- ROA automatically issued by DISCO-agent
- Agent detects RC was certified and is in repositories
- Agent signs ROA for each (sub)prefix announced by AS
 - Max-Length: only for all subprefixes

DISCO: automated issuing of correct ROAs to all announced (sub)prefixes. Max-Length used if more efficient (and then for all subprefixes).

- AS 0: un-announced subprefix
- AS *: unprotected subprefix (!!)

- ROA automatically issued by DISCO-agent
- Agent detects RC was certified and is in repositories
- Agent signs ROA for each (sub)prefix announced by AS
 - Max-Length: only for all subprefixes
 - Automated or semi-automated, for off-line signing key
- Exchange ROAs with repositories, routers

- DISCO: automated issuing of correct ROAs to all announced (sub)prefixes. Max-Length used if more efficient (and then for all subprefixes).
 - AS 0: un-announced subprefix
 - AS *: unprotected subprefix (!!)

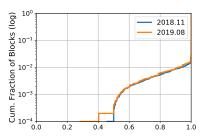

DISCO: Experimental Evaluation

PK sent via Transitive Attribute 0xff

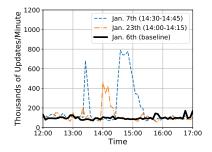
reserved for testing and development

・ロト ・ 同ト ・ ヨト ・ ヨト

ж



% of announcements with most-common prefix: 97% of prefixes has just one origin!


DISCO: Experimental Evaluation

PK sent via Transitive Attribute 0xff

reserved for testing and development

% of announcements with most-common prefix: 97% of prefixes has just one origin!

Prefix updates; buggy-routers caused 'peak' in both experiments (less in 2nd patching).

Triggered bug in few FRR routers (patch exists)

Can we send pk in BGP announcements as transitive attribute?

<< 1% of ASes drop announcement *or* attribute

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Few un-patched, buggy routers failed

- Can we send pk in BGP announcements as transitive attribute?
 - << 1% of ASes drop announcement *or* attribute
 - Few un-patched, buggy routers failed
- ► Can registrars certify pk from > x% of vantage points?
 - Used simulations of BGP topology, for reachability to 262 RouteView and RIPE RIS collectors
 - Result: Even with over 1% drop of both announcements and attribute, more than 95% of the vantage points report pk

Can we send pk in BGP announcements as transitive attribute?

- << 1% of ASes drop announcement *or* attribute
- Few un-patched, buggy routers failed
- Can registrars certify pk from > x% of vantage points?
 - Used simulations of BGP topology, for reachability to 262 RouteView and RIPE RIS collectors
 - Result: Even with over 1% drop of both announcements and attribute, more than 95% of the vantage points report pk
- Can attacker get DISCO-certified by prefix hijacking?
 - Prefix-hijacks: < 3% certified, and 81% of these are by sole upstream provider of victim

- Can we send pk in BGP announcements as transitive attribute?
 - << 1% of ASes drop announcement *or* attribute
 - Few un-patched, buggy routers failed
- Can registrars certify pk from > x% of vantage points?
 - Used simulations of BGP topology, for reachability to 262 RouteView and RIPE RIS collectors
 - Result: Even with over 1% drop of both announcements and attribute, more than 95% of the vantage points report pk
- Can attacker get DISCO-certified by prefix hijacking?
 - Prefix-hijacks: < 3% certified, and 81% of these are by sole upstream provider of victim
- $\blacktriangleright \Rightarrow \text{DISCO}$ appears deployable.

Conclusion

- Adoption of RPKI is critical and challenging
- Automation, validation may help adoption, reduce conflicts
- DISCOmay help: automation, validation, avoid dependency on records
 - At costs... e.g., prefix-squatters
 - Maybe adoption will improve anyway? there is hope!
 - Improving security benefits and incentives may help, too

Further work

Specifications

Production-ready implementation

Thank you! Questions?

Amir.Herzberg@UConn.edu

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ