Encrypted DNS → Privacy? A Traffic Analysis Perspective

<u>Sandra Siby</u>, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, Carmela Troncoso

NDSS, 25 February 2020

Can encrypting DNS protect users from trafficanalysis based monitoring and censoring?

We conducted a number of experiments that show that:

- Monitoring and censorship are feasible even when DNS is encrypted.
- Current proposed EDNS0-based countermeasures are not sufficient to prevent traffic analysis attacks.

The Past

The Past

The Past

Encrypted DNS

Encrypted DNS

Scenario

Goal: Determine webpage visited by the client from DNS-over-HTTPS traffic.

A webpage visit can have multiple DNS queries/ responses associated with it, which could be a fingerprint for identification of that webpage.

Scenario

Training

Training

Our experiment setup

Closed World Experiment

Set of webpages visited by user

Set of webpages known to the adversary

Which particular webpage did the user visit?

Closed World Experiment

Set of webpages visited by user

Set of webpages known to the adversary

~90% Precision and Recall

Open World Experiment

Set of webpages visited by user

> Set of webpages monitored by adversary

Did the user visit a page in the monitored set?

Adversary Goal 2: Censorship

Censoring adversary: Identify webpages as fast as possible

Study the uniqueness of DoH traffic when only the first *L* TLS records have been observed (set of 5,000 pages).

Adversary Goal 2: Censorship

Censoring adversary: Identify webpages as fast as possible

Adversary strategy: Block on first query?

- ► 4th record usually corresponds to first DoH query.
- Blocking prevents user from loading the page.
- Could result in high collateral damage pages with same domain name lengths are also blocked!
 - Iran: Blocking domain length = 13 blocks 97 domains in the censored website list, but also blocks ~86,000 domains in the Alexa top 1M list

Robustness of attack

What happens when any of the parameters in this setup change?

Robustness of attack: Parameters

Location

Infrastructure

- Resolver
- Client
- Platform

Time (Dynamic Nature of websites)

Robustness of attack: Results

- Changes in scenario affect attack
- Adversary needs classifier tailored to scenario for best results

Monitoring and Censorship are feasible even when DNS traffic is encrypted.

Website fingerprinting using DNS traces requires <u>~100 times</u> <u>less data than traditional website fingerprinting</u>.

Countermeasures?

EDNS0 Based Countermeasures

EDNS0: Extension mechanisms for DNS, specifies a padding option¹

Padding of DNS queries: We implemented the recommended padding strategy² on Cloudflare's DoH client. Pad query to multiples of 128 bytes.

EDNS0 Based Countermeasures

Padding of DNS responses: Cloudflare's resolver pads responses to multiples of 128 bytes. Recommended strategy: Pad to multiples of 468 bytes

Our experiments

EDNS0-128	Cloudflare's response padding strategy		
EDNS0-468	Recommended response padding strategy		
Perfect Padding	Keep all TLS record sizes constant		
EDNS0-128-adblock	User-side measure (ad-blocker usage)		
DNS over Tor	Cloudflare's DNS over Tor service		

Results: Countermeasure comparison

Results: DNS over Tor

Results: Overhead

Sent + received bytes (from TLS records)

We reran the classification process with DoT traffic

Using DoT leads to ~40% Precision and Recall (compared to ~90% for DoH)

We reran the classification process with DoT traffic

Using DoT leads to ~40% Precision and Recall (compared to ~90% for DoH)

DoT traffic looks different from DoH traffic

Does traffic variability account for better protection in DoT?

Ongoing/Next Steps

Realistic scenarios

- Data pollution (Multi-tab browsing, background apps)
- Caching

Countermeasures

Padding + repacketization measures — Can we achieve protection without using Tor?

Summary

- Surveillance and DNS-based censorship can occur even in the presence of encrypted DNS.
- Current proposed EDNS0 based countermeasures are not sufficient.
- Recommendation: Repacketization and padding

Code and datasets at:

https://github.com/spring-epfl/doh_traffic_analysis

Get in touch: <u>sandra.siby@epfl.ch</u> @sansib

BACKUP

Feature extraction

Adversary Goal 2: Censorship

Censoring adversary: Identify webpages as fast as possible

Consequences of blocking based on domain length

Adversary Goal 2: Censorship

Censoring adversary: *Identify webpages as fast as possible*

Adversary strategy: High confidence guessing?

- By 15th record (15% of trace), adversary can guess with high confidence.
- Less collateral damage.

DNS over Tor

Fixed cell sizes

• Affect size features

Repacketization

• Affect directionality features

Clusters in confusion graph?

Pages in a cluster are misclassified as each other

Confusion graph of misclassified labels

DoT traffic looks different from DoH traffic:

- Only DNS Type A records (compared to Type A and Type AAAA in DoH)
- Even after removal of AAAA traffic, smaller number of records in DoT (more 'bare-bones' than DoH)
- Larger record size in DoT

Does this traffic variability account for better protection in DoT?