

BLAZE: BLAZING FAST PRIVACY-PRESERVING MACHINE LEARNING

0

ARPITA PATRA AND AJITH SURESH

Ajith Suresh CrIS Lab, IISc https://www.csa.iisc.ac.in/~cris

Secure Multi-party Computation (MPC)

□ MPC for small number of parties (3PC)

Our Efficient BLAZE Protocol (Results)

Privacy Preserving Machine Learning (PPML)

A set of parties with private inputs wish to compute some joint function of their inputs.

- Goals of MPC:
 - Correctness Parties should correctly evaluate the function output.
 - Privacy Nothing more than the function output should be revealed

A set of parties with private inputs wish to compute some joint function of their inputs.

Goals of MPC:

- Correctness Parties should correctly evaluate the function output.
- Privacy Nothing more than the function output should be revealed

Trusted

Third Party

A set of parties with private inputs wish to compute some joint function of their inputs.

Goals of MPC:

- Correctness Parties should correctly evaluate the function output.
- Privacy Nothing more than the function output should be revealed

A set of parties with private inputs wish to compute some joint function of their inputs.

Goals of MPC:

- Correctness Parties should correctly evaluate the function output.
- Privacy Nothing more than the function output should be revealed

MPC

ADVERSARY

- Semi honest:
 - Follows the protocol but tries to learn more
- Malicious:
 - Can arbitrarily deviate from the protocol

MPC

ADVERSARY

- Semi honest:
 - Follows the protocol but tries to learn more
- Malicious:
 - Can arbitrarily deviate from the protocol

Malicious Corruption

MPC

 \triangleright

Efficiency and **Simplicity** [MRZ15,AFLNO16,FLNW17,CGMV17]

Efficiency and Simplicity [MRZ15, AFLNO16, FLNW17, CGMV17]

> Our focus: MPC with 3 parties

Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]

> Our focus: MPC with 3 parties

> Corruption : honest majority

Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]

> Our focus: MPC with 3 parties

> Corruption : honest majority

□ Majority of the parties are honest

□ 3PC - at most 1 corruption

Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]

> Our focus: MPC with 3 parties

> Corruption : honest majority

> Outsourced Computation

- Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]
- > Our focus: MPC with 3 parties
- > Corruption : honest majority
- > Outsourced Computation
- Pre-processing Model

- Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]
- > Our focus: MPC with 3 parties
- > Corruption : honest majority
- Outsourced Computation
- Pre-processing Model
 - Pre-processing phase

- > Our focus: MPC with 3 parties
- Corruption : honest majority
- Outsourced Computation
- Pre-processing Model
 - Pre-processing phase

Data-independent ComputationRelatively slow and expensive

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB, CSA, IISC

- Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]
- > Our focus: MPC with 3 parties
- > Corruption : honest majority
- > Outsourced Computation
- Pre-processing Model
 - Pre-processing phase
 - Online Phase

Efficiency and Simplicity [MRZ15,AFLN016,FLNW17,CGMV17]

- > Our focus: MPC with 3 parties
- Corruption : honest majority
- Outsourced Computation
- Pre-processing Model
 - Pre-processing phase
 - Online Phase –

Minimized communicationBlazing fast

BLAZE PROTOCOL

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

0

Communication Cost per Multiplication Gate (malicious)

Mult: x. y

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

BLAZE : https://eprint.iacr.org/2020/042

	Ref	Pre-processing (#elements)	Online (#elements)	Security
0	Araki et al'17	12	9	Abort

Mult: x.y

BLAZE : https://eprint.iacr.org/2020/042

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

5	Ref	Pre-processing (#elements)	Online (#elements)	Security
	Araki et al'17	12	9	Abort
	ASTRA	21	4	Fair

Mult: x. y

BLAZE : https://eprint.iacr.org/2020/042

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

)	Ref	Pre-processing (#elements)	Online (#elements)	Security
	Araki et al'17	12	9	Abort
	ASTRA	21	4	Fair
	Boneh et al'19	0	3	Abort

Communication Cost per Multiplication Gate (malicious)

Mult: x. y

BLAZE : https://eprint.iacr.org/2020/042

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Ref	Pre-processing (#elements)	Online (#elements)	Security
Araki et al'17	12	9	Abort
ASTRA	21	4	Fair
Boneh et al'19	0	3	Abort
BLAZE	3	3	Fair

Communication Cost per Multiplication Gate (malicious)

Mult: x. y

BLAZE : <u>https://eprint.iacr.org/2020/042</u>

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Solution ??

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

MPC MEETS ML

Use MPC to achieve privacy

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Linear Regression

Q

Logistic Regression

Neural Networks

ML ALGORITHMS CONSIDERED

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Secure Dot Product

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Secure Comparison

Secure Dot Product

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Embedding Floating point Numbers Secure Dot Product

Secure Comparison

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Single bit to Arithmetic Value Secure Dot Product

Embedding Floating point Numbers

Secure Comparison

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Truncation

Single bit to Arithmetic Value Secure Dot Product

> Secure Comparison

Embedding Floating point Numbers

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Non-linear Activation Functions

Truncation

Secure Dot Product

> Secure Comparison

Single bit to Arithmetic Value Embedding Floating point Numbers

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Secure Dot Product

and many more ...

Non-linear Activation Functions

Truncation

Single bit to Arithmetic Value

Embeddin g Floating point Numbers

Secure

Comparison

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC

Communication Cost per Dot Product

BLAZE : https://eprint.iacr.org/2020/042

 $X \bullet Y = \sum_{i=1}^{d} x_i \cdot y_i$

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Communication Cost per Dot Product $X \bullet Y = \sum_{i=1}^{d} x_i \cdot yi$

BLAZE : https://eprint.iacr.org/2020/042

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Online

(#elements)

Pre-processing

(#elements)

Ref

Communication Cost per Dot Product $X \bullet Y = \sum_{i=1}^{d} x_i \cdot yi$

Security

BLAZE: https://eprint.iacr.org/2020/042

d – #elements in each vector

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Summary of Our Benchmarking Results

Algorithm	Improvement in terms of Online Throughput over State-of-the-art protocols over WAN			
	Training	Prediction		
near Regression	333.22 x	194.86 x		
ogistic Regression	53.19 x	27.52 x		
leural Networks		276.31x		

*Throughput for Training - #iterations processed by servers / minute *Throughput for Prediction - #queries processed by servers / minute

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

Algorithm	Ref.	Preprocessing		Online	
Algorithm		TP	Gain	ТР	Gain
Linear Regression	ABY3 BLAZE	61.02 244.74	4.01×	30.61 4449.55	145.35×
Logistic Regression	ABY3 BLAZE	60.71 243.81	4.02×	60.99 1945.24	31.89 ×

TABLE VI: Throughput (TP) for ML Training for a batch size B-128 and feature size n-784

Summary of Our Benchmarking Results

Alexalders	Ref.	Preprocessing		Online	
Algorithm		TP (×10 ³)	Gain	TP (×10 ³)	Gain
Linear Regression	ABY3 BLAZE	15.57 62.61	4.02 imes	15.67 2660.53	169.75×
Logistic Regression	ABY3 BLAZE	15.41 62.13	4.03×	15.55 366.68	23.57×
Neural Networks	ABY3 BLAZE	0.10 0.41	4.01 imes	0.14 33.74	245.74×

TABLE VII: Throughput (TP) for ML Inference for a feature size of n-784

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB ,CSA, IISC

References

- Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160-164, 1982.
- 2. P. Mohassel, M. Rosulek, and Y. Zhang. Fast and Secure Three party Computation: Garbled Circuit Approach. In CCS, 2015.
- T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Optimized Honest-Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier. In IEEE S&P, 2017.
- 4. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-Throughput Secure Three-Party Computation for Malicious Adversaries and an Honest Majority. In EUROCRYPT, 2017.
- 5. K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof. Fast Large-Scale Honest-Majority MPC for Malicious Adversaries. In CRYPTO, 2018.
- 6. P. Mohassel and P. Rindal, ABY3: A Mixed Protocol Framework for Machine Learning. In ACM CCS, 2018.
- 7. H. Chaudhari, A. Choudhury, A. Patra and A. Suresh. ASTRA: High-throughput 3PC over Rings with Application to Secure Prediction, In ACM CCSW, 2019.
- 8. D. Boneh, E. Boyle, H. Corrigan{-}Gibbs, N. Gilboa and Y. Ishai. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. In CRYPTO, 2019.

AJITH SURESH | CRYPTOGRAPHY AND INFORMATION SECURITY LAB , CSA, IISC